

WirelessUSB[™] - UGWJ4US

Data Sheet

Unigen Corp. Wireless Module Products

Part Number Family: LETO-LPA WirelessUSB[™] Radio Modules UGWJ4USHN33A Series Long Range Modules

Issue Date: 31 December 2007

Revision: 1.30

Revision History

Rev. No.	History	Issue Date	Remarks
0.9	Final Draft	4 Feb 2007	Update Reference Documents, Functional Description
1.0	Prelim Release	12 Feb 2007	Preliminary Release, adds EVT test data
1.1	Formal Release	14 May 2007	Add Testing Result
1.2	Update	10 July 2007	Update sleep current and remove BB option
1.3	Update	31 Dec 2007	Update mechanical drawing with relative dimensions

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Unigen Corporation disclaims all liability, including liability for infringement of any proprietary rights, relating to use of information in this document. No license, expressed or implied, by estoppel or otherwise, to any intellectual property rights is granted herein.

*Third-party brands, names, and trademarks are the property of their respective owners.

Copyright © Unigen Corporation, 2006

WirelessUSB[™] - UGWJ4US

Data Sheet

TABLE OF CONTENTS:

Revision History	1
REFERENCE DOCUMENTATION:	3
INTRODUCTION:	4
FEATURES:	5
DESCRIPTION:	5
FUNCTIONAL BLOCK DIAGRAMS:	6
PIN ASSIGNMENTS:	7
Table - Pin Assignments	8
PIN FUNCTIONS:	8
ABSOLUTE MAXIMUM RATINGS:	9
RECOMMENDED OPERATING CONDITIONS:	9
DC ELECTRICAL CHARACTERISTICS:	10
Table – Electrical Characteristics	10
RADIO PARAMETERS:	12
AGENCY CERTIFICATIONS (PRE-SCAN):	14
Table – Regulatory Agency Certifications	14
REGULATORY COMPLIANCE STATEMENT:	14
FUNCTIONAL OVERVIEW:	15
MECHANICAL CHARACTERISTICS:	45
MECHANICAL DRAWINGS:	45
ORDERING INFORMATION:*	46
Typical Applications	46
CONTACT INFORMATION:	47

Solutions for a Real Time World

Data Sheet

REFERENCE DOCUMENTATION:

The Unigen LETO-LPA (UGWJ4USHN33A) WirelessUSB[™] LP module adaptation of the Cypress Semiconductor CYRF6936 LP 2.4GHz DSSS Radio SOC is represented in this document. The detail provided is information for using LETO-LPA in a digital electronic device and is only a "companion" document to Cypress Semiconductors' CYWRF6936 documentation for the above noted part.

The CYRF6936 LP 2.4GHz DSSS Radio SOC 10-meter information and technical detail LP (ex. register settings, timing, application interfaces, clocking and power management, etc.) may be obtained from the Cypress Semiconductor web site or contacting Cypress's authorized sales representatives.

The following is a list of required documents and locations known at the time of publication that accompany this datasheet.

 The CYRF6936 LP 2.4GHz DSSS Radio SOC Datasheet – CYRF6936.pdf <u>http://download.cypress.com/publishedcontent/publish/design_resources/datasheets/contents/cyrf6936_8.pdf</u>

WirelessUSB[™] - UGWJ4US

Data Sheet

INTRODUCTION:

Unigen LETO-LPA WirelessUSB[™] LP 1000 meter range module represent the convergence of emerging wireless connectivity solutions and the USB "Plug-N-Play" ease of operation. WirelessUSB[™], as created by Cypress Semiconductor, is a low-cost, 2.4GHz communication protocol designed for use in commercial, industrial, consumer, and computer product applications needing highly reliable data connectivity.

LETO-LPA module combine Cypress Semiconductor's wireless and USB expertise with Unigen's module design, manufacturing, and testing proficiency to create production ready, pre-certified modules that are easily integrated into existing, and new product designs.

LETO-LPA module offer immediate, drop-in design solutions and use the native Operating System HID drivers to seamlessly enumerate and operate mouse, keyboard, and gaming devices, or other devices using the HID specification for communication with the host systems.

WirelessUSB[™] - UGWJ4US

Data Sheet

FEATURES:

- Complete Transceiver Radio module: CYRF6936 LP 2.4GHz DSSS Radio SOC, Tuned Matching RF Network, 10ppm crystal, complete PCBA including trace antenna and universal 12 position interface header
- Operates in the 2.4 to 2.483GHz, unlicensed frequency range (ISM Industrial, Scientific and Medical)
- Transmit power up to +23dBm
- Receive sensitivity up to -97dBm
- Transmission Range up to 1000 meters NLOS
- DSSS data rates up to 250 kbps, GFSK data rate of 1 Mbps
- Auto Transaction Sequencer (ATS) no MCU intervention
- Framing, Length, CRC16, and Auto ACK
- Fast Startup and Fast Channel Changes
- Separate 16-byte Transmit and Receive FIFOs
- AutoRate[™] dynamic data rate reception
- Receive Signal Strength Indication (RSSI)
- Serial Peripheral Interface (SPI) control while in sleep mode
- 4-MHz SPI microcontroller interface
- Operating voltage from 2.7V to 3.6V
- Sleep Current ~350 µA
- Operating current 115mA-320mA Internal PA setting 5 (-5dBm) thru 7 (+4dBm)
- Operating temperature from 0 to 70°C
- Small PCBA Design: 1.36" x 0.90" x 0.200" (34.7mm x 23.0mm x 6.0 mm*) *board to board height
- FCC Modular Approval Grant (MA): FCC Part 15, EN 300328-1, EN 301 489-1, and Industry Canada RSS-210 standards
- No additional regulatory RF test needed for listed countries

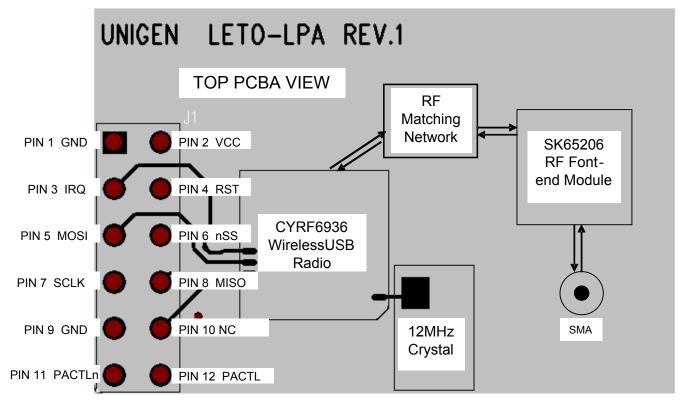
DESCRIPTION:

LETO-LPA WirelessUSB[™] Modules are tightly integrated, low-cost, high-reliability 2.4GHz TX/RX communications modules for use with Human Interface Device (HID) class compliant products.

The LETO-LPA modules use the Cypress Semiconductor CYRF6936 LP 2.4GHz DSSS Radio SOC device and Skyworks SK65206-13 integrated RF front-end module.

LETO-LPA modules are a complete radio solution requiring only integration into an existing, or new device.

LETO-LPA modules are 100% tested for functional operation and are pre-screened for FCC Part 15 compliance. The modules are supplied with an integrated antenna. For applications where the integrated antenna is unsuitable, model LP are available that support using an external coaxial antenna. Unigen recommends using a 2dBi gain dipole antennae for customers requiring an external antenna.

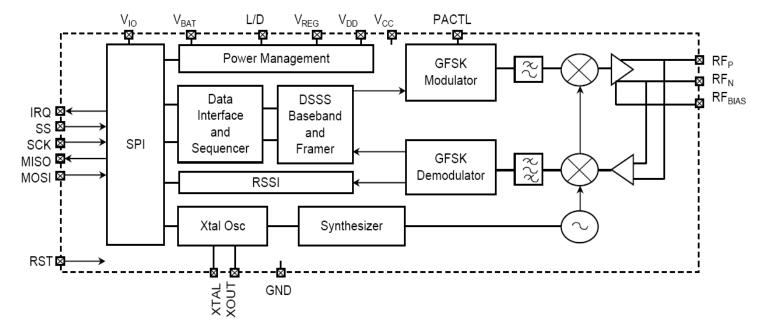

Solutions for a Real Time World

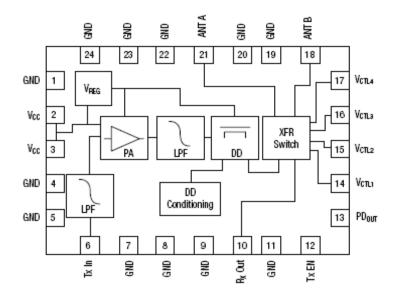
Data Sheet

LETO-LPA modules are intended for use in computer and consumer product/device applications and use the OS native HID class drivers to enable compliant devices. In most applications, *no additional host drivers are required*. The modules are suitable for use in embedded and/or industrial applications as well.

The LETO-LPA is less than 1.4"sq and is available with a keyed shrouded header mounting directly to the matching receptacle on the PCB.

Functional Block Diagrams:




Solutions for a Real Time World

Data Sheet

CYRF 6936 Simplified Block Diagram

SK65206-13 Block Diagram

Solutions for a Real Time World

Data Sheet

PIN ASSIGNMENTS:

Function	UGWJ4US	1/0	Description
GND	1	-	Module Ground
Vcc	2	-	Module Input Power
IRQ	3	0	Interrupt Request
RSTn	4	Ι	Module Reset
MOSI	5	Ι	Receive command/address/data input from MCU
SSn	6	Ι	SPI Slave Select Enable
SCLK	7	Ι	SPI Input Clock
MISO	8	0	Transmit data output to MCU
GND	9	-	Module Ground
N/C	10		No Connect
PACTLn	11	O/Hi-Z	Invert Power Amplifier Control
PACTL	12	O/Hi-Z	Power Amplifier Control

Table - Pin Assignments

PIN FUNCTIONS:

MOSI:	SPI Input from MCU Receives commands/data from the device microcontroller.
MISO:	SPI Output to MCU Transmits requests/data to the device microcontroller.
SSn:	SPI Slave Select Enable Input SPI enable
IRQ:	Interrupt Request The Interrupt Request Pin Select bits are used to determine the drive method of the IRQ pin
GND:	Module Ground Ground to equal 0Vdc
RSTn:	Module Reset Active HIGH reset switch
SCLK:	SPI Input Clock
PACTLn:	Invert Power Amplifier Control

Data Sheet

 PACTL:
 Power Amplifier Control

 Enables/disables external power amplification circuitry, where available

 Vcc:
 Module Input Power

 Vcc range 2.4 to 3.6Vdc

ABSOLUTE MAXIMUM RATINGS:

Symbol	Definition	Min.	Max.	Unit
Vcc	Supply Voltage – Radio SOC	-0.3	3.9	Vdc
Ts	Storage Temperature Range	-65	150	°C
ΤΑΡ	Ambient Temperature with Power Applied	-55	125	°C
VLI	VDC to Logic Inputs	-0.3	Vcc + 0.3	Vdc
V O/Hi-Z	VDC to Outputs in High-Z state	-0.3	Vcc + 0.3	Vdc
SDVD	Static Discharge Voltage Digital		>2000	Vdc
SDVR	Static Discharge Voltage RF		>1100	Vdc
LUC	Latch-up Current +200 -200			mA

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of this module. Avoid using the module outside the recommended operating conditions defined below. This module is ESD sensitive and should be handled and/or used in accordance with proper ESD mitigation.

RECOMMENDED OPERATING CONDITIONS:

Symbol	bol Description		Value				
Symbol	Description	Min.	Typ.*	Max.	Unit		
Vcc	Supply Voltage	2.4	3.0	3.6	VDC		
Тос	Commercial Operating Temperature Range	0	25	70	°C		
GND	Ground Voltage		0		VDC		

Solutions for a Real Time World

Data Sheet

DC ELECTRICAL CHARACTERISTICS:

Symbol	Description	Condition(a)	Value			
Symbol	Description	Condition(s)	Min.	Typ.*	Max.	Unit
V _{CC}	Supply Voltages		2.4	3.3	3.6	V
V _{OH1}	Voltage Output High Condition 1	At $I_{OH} = -100.0 \mu A$	V _{CC} - 0.2	V _{CC}		V
V _{OH2}	Voltage Output High Condition 2	At $I_{OH} = -2.0 \text{ mA}$	V _{CC} - 0.4	V _{CC}		V
V _{OL}	Voltage Output Low	At I_{OL} = 2.0 mA		0.0	0.45	V
V _{IH}	Voltage Input High		0.7 V _{CC}		V _{CC}	V
V _{IL}	Voltage Input Low		0		0.3 V _{CC}	V
I _{IL}	Input Leakage Current	$0 < V_{IN} < V_{CC}$	-1	0.26	+1	μA
I _{CC} (GSFK)	Average TX I_{CC} , 1Mbps, slow channel	PA=5, 2-way, 4- bytes/10 ms		0.87		mA
I _{CC} (32-8DR)	Average TX I_{CC} , 250kbps, fast channel	PA=5, 2-way, 4- bytes/10 ms		1.2		mA
I _{SB}	Sleep Mode I _{CC}	PMU disabled		350	400	μA
IDLE I _{CC}	Radio off, XTAL Active	XOUT disabled		1.0		mA
I _{SYNTH}	I _{cc} During Synth Start			8.4		mA
TX I _{CC}	TX I _{cc} During Transmit (V _{cc} 3.3VDC)	PA = 0 (-11 dBm)	110	115	118	mA
TX I _{CC}	TX I _{CC} During Transmit (V _{CC} 3.3VDC)	PA = 1 (-6 dBm)	110	115	118	mA
TX I _{CC}	TX I _{CC} During Transmit (V _{CC} 3.3VDC)	PA = 2 (-2 dBm)	110	115	118	mA
TX I _{CC}	TX I _{cc} During Transmit (V _{cc} 3.3VDC)	PA = 3 (+3 dBm)	110	115	118	mA
TX I _{CC}	TX I _{CC} During Transmit (V _{CC} 3.3VDC)	PA = 4 (+5 dBm)	115	120	122	mA
TX I _{CC}	TX I _{cc} During Transmit (V _{cc} 3.3VDC)	PA = 5 (+13 dBm)	140	150	155	mA
TX I _{CC}	TX I _{CC} During Transmit (V _{CC} 3.3VDC)	PA = 6 (+19 dBm)	215	220	225	mA
TX I _{CC}	TX I _{CC} During Transmit (V _{CC} 3.3VDC)	PA = 7 (+23 dBm)	310	320	325	mA
RX I _{CC}	RX I _{CC} During Receive (V _{CC} 3.3VDC)	LNA off, ATT on	18.2	20.0	23.5	mA
RX I _{CC}	RX I _{cc} During Receive (V _{cc} 3.3VDC)	LNA on, ATT off	18.2	20.0	23.5	mA
MTBF		Calculated			>87,600	Hours

Table – Electrical Characteristics

*= Measured with 3.3Vcc at 25°C

¹= Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LP 1-way protocol.

 2 = Mean Icc when transmitting a 5-byte packet (3 data bytes + 2 bytes of protocol) every 10ms using the Wireless USB LP 2-way protocol.

Notes

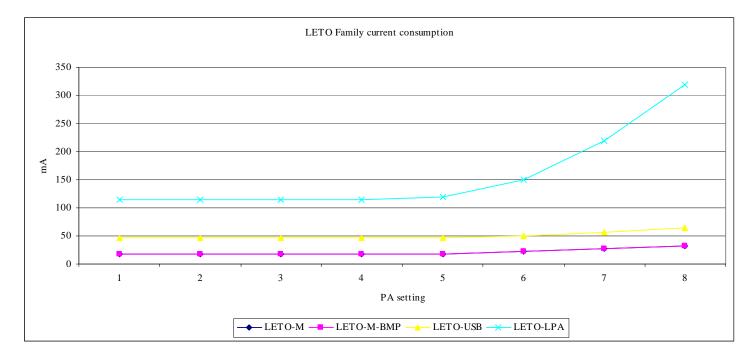
5. It is permissible to connect voltages above VIO to inputs through a series resistor limiting input current to 1 mA. AC timing not guaranteed. 6. Human Body Model (HBM).

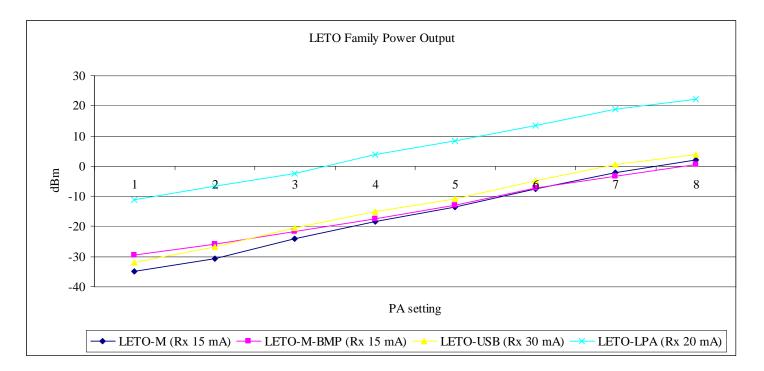
7. VREG depends on battery input voltage.

8. In sleep mode, the I/O interface voltage reference is VBAT.

9. In sleep mode, Vcc min. can go as low as 1.8v

10. Includes current drawn while starting crystal, starting synthesizer, transmitting packet (including SOP and CRC16), changing to receive mode, and receiving ACK handshake. Device is in sleep except during this transaction.


11. ISB is not guaranteed if any I/O pin is connected to voltages higher than Vio.



Solutions for a Real Time World

Data Sheet

CURRENT & OUTPUT CHARACTERISTICS:

WirelessUSB[™] - UGWJ4US

Data Sheet

RADIO PARAMETERS:

Parameter Description	Condition	Min.	Тур.	Max	Unit
RF Frequency Range		2.400	ISM	2.497	GHz
Radio Receiver (T = 25°C, V _{CC} = 3.3V, f _{OSC} = 12.000000M	1Hz, BER ≤10 ⁻³				
Sensitivity 125kbps 64-8DR	BER 1E-3		-97		dBm
Sensitivity 250kbps 32-8DR	BER 1E-3		-93		dBm
Sensitivity	CER 1E-3	-80	-87		dBm
Sensitivity GFSK	BER 1E-3, ALL SLOW =1		-84		dBm
LNA Gain	LNA On		22.8		dB
ATT Gain	ATT On		-31.7		dB
Maximum Received Signal	LNA On	-15	-6		dBm
RSSI Value for PWR _{in} >-60dBm	LNA On		21		Count
RSSI Slope			1.9		dB/Count
Interference Performance (CER 1E-3)					
Co-channel Interference rejection Carrier-to-Interference	C = -60 dBm		9		dB
(C/I)					
Adjacent (±1 MHz) channel selectivity C/I 1 MHz	C = -60 dBm		3		dB
Adjacent (±2 MHz) channel selectivity C/I 2 MHz	C = -60 dBm		-30		dB
Adjacent (\geq 3 MHz) channel selectivity C/I > 3 MHz	C = -67 dBm		-38		dB
Out-of-band Blocking Interference Signal Frequency	/				
30MHz – 12.75GHz	C = -67 dBm		-30		dBm
Intermodulation	$C = -64 \text{ dBm}, \Delta f = 5, 10 \text{MHz}$		-36		dBm
Receive Spurious Emission					
800 MHz	100 kHz ResBW		-79		dBm
1.6 GHz	100 kHz ResBW		-71		dBm
3.2 GHz	100 kHz ResBW		-65		dBm
Radio Transmitter (T = 25°C, Vcc = 3.3V)		•			
Maximum RF Transmit Power	PA = 7	+22	+23	+24	dBm
Maximum RF Transmit Power	PA = 6	+17	+19	+20	dBm
Maximum RF Transmit Power	PA = 5	+11	+13	+14	dBm
Maximum RF Transmit Power	PA = 4	+4	+5	+6	dBm
Maximum RF Transmit Power	PA = 3	+1	+2	+3	dBm
Maximum RF Transmit Power	PA = 2	-5	-3	-2	dBm
Maximum RF Transmit Power	PA = 1	-8	-6	-7	dBm
Maximum RF Transmit Power	PA = 0	-13	-11	-10	dBm
RF Power Control Range			39		dB
RF Power Range Control Step Size	Seven steps, monotonic		5.6		dB
Frequency Deviation Min	PN Code Pattern 10101010		270		kHz
Frequency Deviation Max	PN Code Pattern 11110000		323		kHz
Error Vector Magnitude (FSK Error)	>0 dBm		10%		dB
Zero Crossing Error			±125		ns
Occupied Bandwidth	100 kHz ResBW, -6dBc	500	876		kHz
Initial Frequency Offset			±75		kHz
Transmission In-Band Spurious (PA = 7)		•			
Second Channel Power (±2 MHz)			-38		dBm
\geq Third Channel Power (\geq 3 MHz)			-44		dBm
Non-Harmonically Related Spurs (PA = 7)	•			•	
800 MHz			-38		dBm
1.6 GHz			-34	1	dBm
3.2 GHz			-47	1	dBm
Harmonic Spurs (PA = 7)	•				
Second Harmonic	4.8 GHz		-43		dBm
Third Harmonic	7.2 GHz		-48		dBm
Fourth and Greater Harmonics	>9 GHz		-59		dBm
Power Management	· · · ·			1	JUDIT
Crystal Start to 10 ppm			0.7	1.3	ms
Crystal Start to IRQ	XSIRQ EN=1		0.6	1.5	ms

Solutions for a Real Time World

Data Sheet

Synth Settle	Slow channels	270	μs
Synth Settle	Medium channels	180	μs
Synth Settle	Fast channels	100	μs
Link turn-around time	GFSK	30	μs
Link turn-around time	250 kbps	62	μs
Link turn-around time	125kbps	94	μs
Link turn-around time	<125kbps	31	μs
Maximum Packet Length	All modes except 64 DDR	40	bytes
Maximum Packet Length	64 DDR	16	bytes

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Solutions for a Real Time World

Data Sheet

AGENCY CERTIFICATIONS (PRE-SCAN):

Agency	Test Performed	Туре	Limit	Result	Margin
EU	Radiated Spurious	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.6dB @ 4804MHz
LU	Emissions	30-12.75MHz Transmit Mode	EN 300 328	PASS	-4.9 @ 177.01MHz
		30 25,000 Spurious Emissions	FCC Part 15.209/15.247 (c)	PASS	Results on File
		6dB Bandwidth	15.247(a)	PASS	960kHz
FCC		99% Bandwidth	IC RSS-210	PASS	1.175MHz
15.247	Radiated Emissions	Output Power	15.247(b)	PASS	7.2dBm
13.247		Power Spectral Density (PSD)	15.247(d)	PASS	3.06dBm
		Bandedge	FCC Part 15.209 /15.247(c)	PASS	Results on File
		Out of band	15.247(c)	PASS	Results on File
		Output Power, Power spectral density at normal conditions	EN 300 328-1	PASS	Results on File
		Frequency Range at normal conditions	EN 300 328-1	PASS	Results on File
	Radio Performance Test	Output Power over extreme conditions	EN 300 328-1	TBT	
	Radio Performance Test	Frequency Range over extreme conditions	EN 300 328-1	TBT	
EU		Conducted spurious emissions, 30MHz - 12750MHz, transmit mode	EN 300 328-1	PASS	Results on File
		Conducted spurious emissions, 30MHz - 12750MHz, receive/stand-by mode	EN 300 328-1	PASS	Results on File
	Radiated Spurious	30 - 12,750 MHz -Spurious Emissions Transmit Mode	EN 300 328 V1.2.1	PASS	Results on File
	Emissions	30 - 12,750 MHz -Spurious Emissions Receive Mode	EN 300 328 V1.2.1	PASS	Results on File

Table – Regulatory Agency Certifications

REGULATORY COMPLIANCE STATEMENT:

The module has been pre-scanned against the relevant requirements of standards: EN 300 328, EN 301 489-17, FCC part 15 and Industry Canada RSS-210. The module is certified by the regulatory authorities in the USA and Canada and complies with the applicable essential requirements of the Radio & Telecommunication Terminal Equipment (R&TTE) directive in the EU. The module can thus be incorporated into products sold worldwide with little or no additional testing of the module itself. *The end product must meet the appropriate technical requirements that apply to that product type but re-certification of the radio module is not required in the USA and Canada.*

In the EU, the integrator is responsible for evaluating their product type per the essential performance requirements of the R&TTE directive (except those associated with the module), declaring compliance and then notifying the member states prior to marketing the product (because the module uses a frequency band that is not harmonized in the EU). It is the responsibility of the module integrator to obtain the necessary approvaLP to sell products incorporating this module in other countries outside of North America and the EU. The report of measurements performed on the module in compliance with the FCC rules and EN standards can be used in these submittal (as the requirements in many other markets around the world are based in part or in whole on the standards prevalent in North America and the EU).

Solutions for a Real Time World

Data Sheet

FUNCTIONAL OVERVIEW:

The CYRF6936 IC provides a complete WirelessUSB SPI to antenna wireless MODEM. The SoC is designed to implement wireless device links operating in the worldwide 2.4-GHz ISM frequency band. It is intended for systems compliant with world-wide regulations covered by ETSI EN 301 489-1 V1.41, ETSI EN 300 328-1 V1.3.1 (Europe), FCC CFR 47 Part 15 (USA and Industry Canada) and TELEC ARIB T66 March, 2003 (Japan). The SoC contains a 2.4-GHz 1-Mbps GFSK radio transceiver, packet data buffering, packet framer, DSSS baseband controller, Received Signal Strength Indication (RSSI), and SPI interface for data transfer and device configuration. The radio supports 98 discrete 1-MHz channels (regulations may limit the use of some of these channels in certain jurisdictions). The baseband performs DSSS spreading/despreading, Start of Packet (SOP), End of Packet (EOP) detection and CRC16 generation and checking. The baseband may also be configured to automatically transmit Acknowledge (ACK) handshake packets whenever a valid packet is received. When in receive mode, with packet framing enabled, the device is always ready to receive data transmitted at any of the supported bit rates enabling the implementation of mixed-rate systems in which different devices use different data rates. This also enables the implementation of dynamic data rate systems, which use high data rates at shorter distances and/or in a low-moderate interference environment, and change to lower data rates at longer distances and/or in high interference environments. The SKY65206-13 is an integrated RF front end module for 802.11b/g WLAN applications. A single supply voltage and a positive supply switch control simplify bias requirements. The PA is manufactured using the Skyworks InGaP HBT process.

Data Transmission Modes

The SoC supports four different data transmission modes:

- In GFSK mode, data is transmitted at 1 Mbps, without any DSSS.
- In 8DR mode, 8 bits are encoded in each derived code symbol transmitted.
- In DDR mode, 2-bits are encoded in each derived code symbol transmitted. (As in the CYWUSB6936 DDR mode).
- In SDR mode, 1 bit is encoded in each derived code symbol transmitted. (As in the CYWUSB6936 standard modes.)

Both 64-chip and 32-chip Pseudo-Noise (PN) Codes are supported. The four data transmission modes apply to the data after the SOP. In particular the length, data, and CRC16 are all sent in the same mode. In general, lower data rates reduce packet error rate in any given environment.

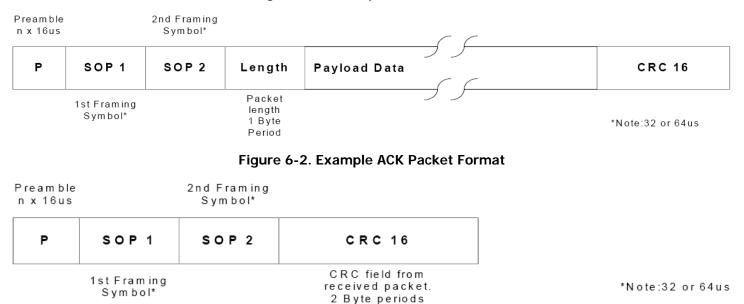
Link Layer Modes

The CYRF6936 IC device supports the following data packet framing features:

SOP – Packets begin with a 2-symbol Start of Packet (SOP) marker. This is required in GFSK and 8DR modes, but is optional in DDR mode and is not supported in SDR mode; if framing is disabled then an SOP event is inferred whenever two successive correlations are detected. The SOP_CODE_ADR code used for the SOP is different from that used for the "body" of the packet and if desired may be a different length. SOP must be configured to be the same length on both sides of the link.

Length – There are two options for detecting the end of a packet. If SOP is enabled, then the length field should be enabled. GFSK and 8DR must enable the length field. This is the first 8-bits after the SOP symbol, and is transmitted at the payload data rate. When the length field is enabled, an End of Packet (EOP) condition is inferred after reception of the number of bytes defined in the length field, plus two bytes for the CRC16 (when enabled—see below). The alternative to using the length field is to infer an EOP condition from a configurable number of successive non-correlations; this option is not available in GFSK mode and is only recommended to enable when using SDR mode.

CRC16 – The device may be configured to append a 16-bit CRC16 to each packet. The CRC16 uses the USB CRC polynomial with the added programmability of the seed. If enabled, the receiver will verify the calculated CRC16 for the payload data against the received value in the CRC16 field. The seed value for the CRC16 calculation is configurable, and the CRC16 transmitted may be calculated using either the loaded seed value or a zero seed; the received data CRC16 will be checked against both the configured and zero CRC16 seeds. CRC16 detects the following errors:


WirelessUSB[™] - UGWJ4US

Data Sheet

- Any one bit in error
- Any two bits in error (no matter how far apart, which column, and so on)
- Any odd number of bits in error (no matter where they are)
- An error burst as wide as the checksum itself

Figure 6-1 shows an example packet with SOP, CRC16 and lengths fields enabled, and *Figure 6-2* shows a standard ACK packet.

Figure 6-1. Example Packet Format

Packet Buffers

All data transmission and reception utilizes the 16-byte packet buffers—one for transmission and one for reception. The transmit buffer allows a complete packet of up to 16-bytes of payload data to be loaded in one burst SPI transaction, and then transmitted with no further MCU intervention. Similarly, the receive buffer allows an entire packet of payload data up to 16 bytes to be received with no firmware intervention required until packet reception is complete. The CYRF6936 IC supports packets up to 255 bytes, however, actual maximum packet length will depend on accuracy of the clock on each end of the link and the data mode; interrupts are provided to allow an MCU to use the transmit and receive buffers as FIFOs. When transmitting a packet longer than 16 bytes, the MCU can load 16-bytes initially, and add further bytes to the transmit buffer as transmission of data creates space in the buffer. Similarly, when receiving packets longer than 16 bytes, the MCU must fetch received data from the FIFO periodically during packet reception to prevent it from overflowing.

Auto Transaction Sequencer (ATS)

The CYRF6936 IC provides automated support for transmission and reception of acknowledged data packets. When transmitting in transaction mode, the device automatically:

- starts the crystal and synthesizer
- enters transmit mode
- transmits the packet in the transmit buffer
- transitions to receive mode and waits for an ACK packet
- transitions to the transaction end state when either an ACK packet is received, or a timeout period expires Similarly, when receiving in transaction mode, the device automatically:
- · waits in receive mode for a valid packet to be received

Solutions for a Real Time World

Data Sheet

• transitions to transmit mode, transmits an ACK packet

• transitions to the transaction end state (receive mode to await the next packet, etc.) The contents of the packet buffers are not affected by the transmission or reception of ACK packets. In each case, the entire packet transaction takes place without any need for MCU firmware action (providing packets of 16 bytes or less are used); to transmit data the MCU simply needs to load the data packet to be transmitted, set the length, and set the TX GO bit. Similarly, when receiving packets in transaction mode, firmware simply needs to retrieve the fully received packet in response to an interrupt request indicating reception of a packet.

Backward Compatibility

The CYRF6936 IC is fully interoperable with the main modes of the first generation devices. The 62.5-kbps mode is supported by selecting 32-chip DDR mode. Similarly, the 15.675-kbps mode is supported by selecting 64-chip SDR mode. In this way, a suitably configured CYRF6936 IC device may transmit data to and/or receive data from a first generation device. Disabling the SOP, length, and CRC16 fields is required for backwards compatibility.

Data Rates

By combining the PN code lengths and data transmission modes described above, the CYRF6936 IC supports the following data rates:

- 1000-kbps (GFSK)
- 250-kbps (32-chip 8DR)
- 125-kbps (64-chip 8DR)
- 62.5-kbps (32-chip DDR)
- 31.25-kbps (64-chip DDR)
- 15.625-kbps (64-chip SDR)

Functional Block Overview

2.4-GHz Radio

The radio transceiver is a dual conversion low IF architecture optimized for power and range/robustness. The radio employs channel-matched filters to achieve high performance in the presence of interference. An integrated Power Amplifier (PA) provides up to +4 dBm transmit power, with an output power control range of 34 dB in 7 steps. The supply current of the device is reduced as the RF output power is reduced.

PA Setting	Typical Output Power (dBm)
7	+23
6	+19
5	+13
4	+5
3	+2
2	-3
1	-6
0	-11

Internal PA Output Power Step Table

Solutions for a Real Time World

Data Sheet

Typical Range Observed Table

Environment	Typical Range (meters)			
LOS	1000			
NLOS	500			
Home/Office 200				
Note: Range observed PA=7, Fremont, CA				

Frequency Synthesizer

Before transmission or reception may commence, it is necessary for the frequency synthesizer to settle. The settling time varies depending on channel; 25 fast channels are provided with a maximum settling time of 100- μ s. The "fast channels" (<100- μ s settling time) are every 3rd channel, starting at 0 up to and including 72 (i.e., 0,3,6,9.......69 & 72).

Baseband and Framer

The baseband and framer blocks provide the DSSS encoding and decoding, SOP generation and reception and CRC16 generation and checking, as well as EOP detection and length field.

Packet Buffers and Radio Configuration Registers

Packet data and configuration registers are accessed through the SPI interface. All configuration registers are directly addressed through the address field in the SPI packet (as in the CYWUSB6934). Configuration registers are provided to allow configuration of DSSS PN codes, data rate, operating mode, interrupt masks, interrupt status, etc.

SPI Interface

The CYRF6936 IC has a SPI interface supporting communications between an application MCU and one or more slave devices (including the CYRF6936). The SPI interface supports single-byte and multi-byte serial transfers using either 4-pin or 3-pin interfacing. The SPI communications interface consists of Slave Select (SS), Serial Clock (SCK), and Master Out-Slave In (MOSI), Master In-Slave Out (MISO), or Serial Data (SDAT). The SPI communications is as follows:

• Command Direction (bit 7) = "1" enables SPI write transaction. A "0" enables SPI read transactions.

• Command Increment (bit 6) = "1" enables SPI auto address increment. When set, the address field automatically increments at the end of each data byte in a burst access, otherwise the same address is accessed.

- Six bits of address.
- Eight bits of data.

The device receives SCK from an application MCU on the SCK pin. Data from the application MCU is shifted in on the MOSI pin. Data to the application MCU is shifted out on the MISO pin. The active-low Slave Select (SS) pin must be asserted to initiate an SPI transfer.

The application MCU can initiate SPI data transfers via a multibyte transaction. The first byte is the Command/Address byte, and the following bytes are the data bytes as shown in *Figure 7-1* through *Figure 7-4*.

The SPI communications interface has a burst mechanism, where the first byte can be followed by as many data bytes as desired. A burst transaction is terminated by deasserting the slave select (SS = 1).

The SPI communications interface single read and burst read sequences are shown in *Figure 7-2* and *Figure 7-3*, respectively.

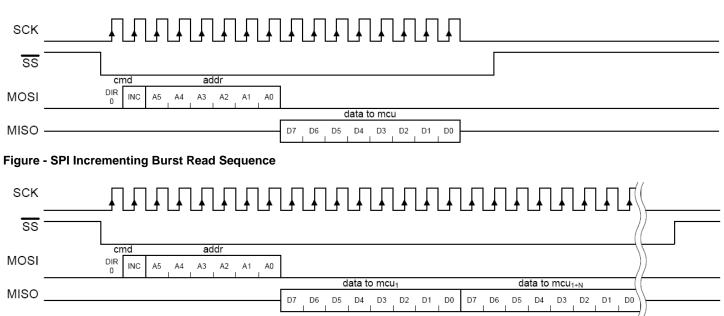
The SPI communications interface single write and burst write sequences are shown in *Figure 7-4* and *Figure 7-5*, respectively.

Solutions for a Real Time World

Data Sheet

This interface may optionally be operated in a 3-pin mode with the MISO and MOSI functions combined in a single bidirectional data pin (SDAT). When using 3-pin mode, user firmware should ensure that the MOSI pin on the MCU is in a high impedance state except when MOSI is actively transmitting data.

The device registers may be written to or read from 1 byte at a time, or several sequential register locations may be written/read in a single SPI transaction using incrementing burst mode. In addition to single byte configuration registers, the device includes register files; register files are FIFOs written to and read from using non-incrementing burst SPI transactions.

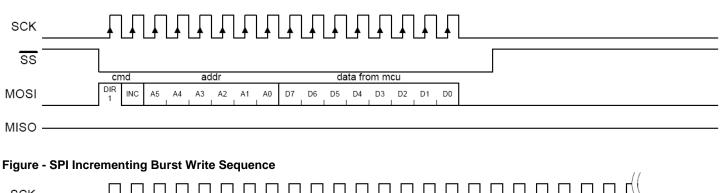

The IRQ pin function may optionally be multiplexed onto the MOSI pin; when this option is enabled the IRQ function is not available while the SS pin is low. When using this configuration, user firmware should ensure that the MOSI pin on the MCU is in a high impedance state whenever the SS pin is high.

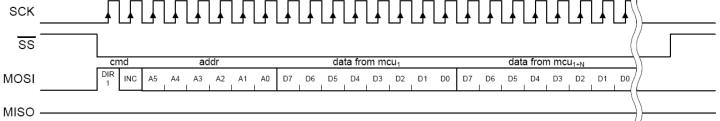
The SPI interface is not dependent on the internal 12-MHz clock, and registers may therefore be read from or written to while the device is in sleep mode, and the 12-MHz oscillator disabled.

The SPI interface and the IRQ and RST pins have a separate voltage reference pin (VIO), enabling the device to interface directly to MCUs operating at voltages below the CYRF6936 IC supply voltage.

Figure - SPI Transaction Format

		Byte 1+N		
Bit #	7	6	[5:0]	[7:0]
Bit Name	DIR	INC	Address	Data


Figure - SPI Single Read Sequence


Figure - SPI Single Write Sequence

Data Sheet

Solutions for a Real Time World

Interrupts

The device provides an interrupt (IRQ) output, which is configurable to indicate the occurrence of various different events. The IRQ pin may be programmed to be either active high or active low, and be either a CMOS or open drain output. A full description of all the available interrupts can be found in *Section 9.0*. The CYRF6936 IC features three sets of interrupts: transmit, receive, and system interrupts. These interrupts all share a single pin (IRQ), but can be independently enabled/disabled. The contents of the enable registers are preserved when switching between transmit and receive modes. If more than one interrupt is enabled at any time, it is necessary to read the relevant status register to determine which event caused the IRQ pin to assert. Even when a given interrupt source is disabled, the status of the condition that would otherwise cause an interrupt can be determined by reading the appropriate status register. It is therefore possible to use the devices without making use of the IRQ pin by polling the status register(s) to wait for an event, rather than using the IRQ pin.

Clocks

A 12-MHz crystal (30-ppm or better) is directly connected between XTAL and GND without the need for external capacitors. A digital clock out function is provided, with selectable output frequencies of 0.75-, 1.5-, 3-, 6-, or 12-MHz. This output may be used to clock an external microcontroller (MCU) or ASIC. This output is enabled by default, but may be disabled. Below are the requirements for the crystal to be directly connected to XTAL pin and GND:

Power Management

The operating voltage of the device is 1.8V to 3.6V DC, which is applied to the VBAT pin. The device can be shutdown to a fully static sleep mode by writing to the FRC END = 1 and END STATE = 000 bits in the XACT_CFG_ADR register over the SPI interface. The device will enter sleep mode within 35-µs after the last SCK positive edge at the end of this SPI transaction. Alternatively, the device may be configured to automatically enter sleep mode after completing packet transmission or reception. When in sleep mode, the on-chip oscillator is stopped, but the SPI interface remains functional. The device will wake from sleep mode, there is a short delay while the oscillator restarts. The device may be configured to assert the IRQ pin when the oscillator has stabilized. The output voltage (VREG) of the Power Management Unit (PMU) is configurable to several minimum values between 2.4V and 2.7V. VREG may be used to provide up to 15 mA (average load) to external devices. It is possible to disable the PMU, and to provide an externally regulated DC supply voltage to the device's main supply in the range 2.4V to 3.6V. The PMU also provides a regulated 1.8V supply to the logic. The PMU has been designed to provide high boost efficiency (74–85% depending on input voltage, output voltage and load) when

Solutions for a Real Time World

Data Sheet

using a Schottky diode and power inductor, eliminating the need for an external boost converter in many systems where other components require a boosted voltage. However, reasonable efficiencies (69-82% depending on input voltage, output voltage and load) may be achieved when using low cost components such as SOT23 diodes and 0805 inductors. The PMU also provides a configurable low battery detection function which may be read over the SPI interface. One of seven thresholds between 1.8V and 2.7V may be selected. The interrupt pin may be configured to assert when the voltage on the VBAT pin falls below the configured threshold. LV IRQ is not a latched event. Battery monitoring is disabled when the device is in sleep mode.

Low Noise Amplifier (LNA) and Received Signal Strength Indication (RSSI)

The gain of the receiver may be controlled directly by clearing the AGC EN bit and writing to the Low Noise Amplifier (LNA) bit of the RX_CFG_ADR register. When the LNA bit is cleared, the receiver gain is reduced by approximately 20 dB, allowing accurate reception of very strong received signals (for example when operating a receiver very close to the transmitter). Approximately 30 dB of receiver attenuation can be added by setting the Attenuation (ATT) bit; this allows data reception to be limited to devices at very short ranges. Disabling AGC and enabling LNA is recommended unless receiving from a device using external PA. When the device is in receive mode the RSSI_ADR register returns the relative signal strength of the on-channel signal power. When receiving, the device will automatically measure and store the relative strength of the signal being received as a 5-bit value. An RSSI reading is taken automatically when the SOP is detected. In addition, a new RSSI reading is taken every time the previous reading is read from the RSSI_ADR register, allowing the background RF energy level on any given channel to be easily measured when RSSI is read when no signal is being received. A new reading can occur as fast as once every 12 μ s.

Register Descriptions

All registers are read and writable, except where noted. Registers may be written to or read from either individually or in sequential groups.

Address	Mnemonic	b7	b6	b5	b4	b3	b2	b1	b0	Default ^[1]	Access ^[1]
0x00	CHANNEL_ADR	Not Used				Channel				-1001000	-bbbbbbb
0x01	TX_LENGTH_ADR				TX Length					00000000	bbbbbbbb
0x02	TX_CTRL_ADR	TX GO	TX CLR	TXB15 IRQEN	TXB8 IRQEN	TXB0 IRQEN	TXBERR IRQEN	TXC IRQEN	TXE IRQEN	00000011	bbbbbbbb
0x03	TX_CFG_ADR	Not Used	Not Used	DATA CODE LENGTH	DATA MODE		PA SETTING			-000101	-bbbbbb
0x04	TX_IRQ_STATUS_ADR	OS IRQ	LV IRQ	TXB15 IRQ	TXB8 IRQ	TXB0 IRQ	TXBERR IRQ	TXC IRQ	TXE IRQEN		rrrrrrr
0x05	RX_CTRL_ADR	RX GO	RSVD	RXB16 IRQEN	RXB8 IRQEN	RXB1 IRQEN	RXBERR IRQEN	RXC IRQEN	RXE IRQEN	00000111	-bbbbbb
0x06	RX_CFG_ADR	AGC EN	LNA	ATT	HILO	FAST TURN EN	Not Used	RXOW EN	VLD EN	10010-10	bbbbb-bb
0x07	RX_IRQ_STATUS_ADR	RXOW IRQ	SOPDET IRQ	RXB16 IRQ	RXB8 IRQ	RXB1 IRQ	RXBERR IRQ	RXC IRQ	RXE IRQ		brrrrrr
0x08	RX_STATUS_ADR	RX ACK	PKT ERR	EOP ERR	CRC0	Bad CRC	RX Code	RX Data Mode			rrrrrrr
0x09	RX_COUNT_ADR			RX Count						00000000	rrrrrrr
0x0A	RX_LENGTH_ADR			RX LENGTH						00000000	rrrrrrr
0x0B	PWR_CTRL_ADR	PMU EN	LVIRQ EN	PMU SEN	Not Used	LVI TH			PMU OUTV	10100000	bbb-bbbb
0x0C	XTAL_CTRL_ADR	XOUT FN		XSIRQ EN	Not Used	Not Used	FREQ			000—100	Bbbbbb
0x0D	IO_CFG_ADR	IRQ OD	IRQ POL	MISO OD	XOUT OD	PACTL OD	PACTL GPIO	SPI 3PIN	IRQ GPIO	00000000	bbbbbbbb
0x0E	GPIO_CTRL_ADR	XOUT OP	MISO	PACTL	IRQ	XOUT	MISO IP	PACTL	IRQ	0000	bbbbrrrr

Register Map Summary

<u>WirelessUSB™ - UGWJ4US</u>

Solutions for a Real Time World

Data Sheet

			OP	OP	OP	IP		IP	IP		
0x0F	XACT_CFG_ADR	ACK EN	Not Used	FRC END			END STATE	ACK TO		1-000000	bbbbbbbb
0x10	FRAMING_CFG_ADR	SOP EN	SOP LEN	LEN EN			SOP TH			10100101	bbbbbbbb
0x11	DATA32_THOLD_ADR	Not Used	Not Used	Not Used	Not Used			TH32		0100	bbbb
0x12	DATA64_THOLD_ADR	Not Used	Not Used	Not Used				TH64		01010	bbbbb
0x13	RSSI_ADR	SOP	Not Used	LNA			RSSI			0-100000	bbbbbbbb
0x14	EOP_CTRL_ADR	HEN		HINT			EOP			10100100	bbbbbbbb
0x15	CRC_SEED_LSB_ADR	CRD SEED LSB					CRC SEED LSB			0000000	bbbbbbbb
0x16	CRC_SEED_MSB_ADR	CRC SEED MSB					CRC SEED MSB			0000000	bbbbbbbb
0x17	TX_CRC_LSB_ADR	CRC LSB					CRC LSB				rrrrrrr
0x18	TX_CRC_MSB_ADR	CRC MSB					CRC MSB				rrrrrrr
0x19	RX_CRC_LSB_ADR	CRC LSB				CRC LSB				11111111	rrrrrrr
0x1A	RX_CRC_MSB_ADR	CRC MSB				CRC MSB				11111111	bbbbbbbb
0x1B	TX_OFFSET_LSB_ADR	STRIM LSB				STRIM LSB				0000000	bbbbbbbb
0x1C	TX_OFFSET_MSB_ADR	Not Used	Not Used	Not Used	Not Used			STRIM MSB		0000	bbbb
0x1D	MODE_OVERRIDE_ADR	RSVD	RSVD	FRC SEN	FRC AWAKE		Not Used	Not Used	RST	00000—0	wwwww
0x1E	RX_OVERRIDE_ADR	ACK RX	RXTX DLY	MAN RXACK	FRC RXDR	DIS CRC0	DIS RXCRC	ACE	Not Used	00000-	bbbbbbb-
0x1F	TX_OVERRIDE_ADR	ACK TX	FRC PRE	RSVD	MAN TXACK	OVRD ACK	DIS TXCRC	RSVD	TX INV	0000000	bbbbbbbb
0x26	XTAL_CFG_ADR	RSVD	RSVD	RSVD	RSVD	START DLY	RSVD	RSVD	RSVD	0000000	wwwwwww
0x27	CLK_OVERRIDE_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD	00000000	wwwwwwww
0x28	CLK_EN_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD	00000000	wwwwwwww
0x29	RX_ABORT_ADR	RSVD	RSVD	ABORT EN	RSVD	RSVD	RSVD	RSVD	RSVD	0000000	wwwwwww
0x32	AUTO_CAL_TIME_ADR						AUTO_CAL-TIME			00000011	wwwwwww
0x35	AUTO_CAL_OFFSET_ADR						AUTO_CAL_OFFSET			00000000	wwwwwwww
0x39	ANALOG_CTRL_ADR	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RX INV	ALL SLOW	0000000	wwwwwww
Register			1	-	-	1				1	1
0x20	TX_BUFFER_ADR	TX Buffer File					TX Buffer File				wwwwwww
0x21	RX_BUFFER_ADR	RX Buffer File					RX Buffer File				rrrrrrr
0x22	SOP_CODE_ADR	SOP Code File					SOP Code File			Note 2	bbbbbbbb
0x23	DATA_CODE_ADR	Data Code File					Data Code File			Note 3	bbbbbbbb
0x24	PREAMBLE_ADR	Preamble File					Preamble File			Note 4	bbbbbbbb
0x25	MFG_ID_ADR	MFG ID File					MFG ID File			NA	rrrrrrr

Notes

b = read/write, r = read only, w = write only, - = not used, default value is undefined.
 SOP_CODE_ADR default = 0x17FF9E213690C782.
 DATA_CODE_ADR default = 0x02F9939702FA5CE3012BF1DB0132BE6F.

4. PREAMBLE_ADR default = 0x333302.

Solutions for a Real Time World

Data Sheet

Mnemonic		CHANNEL_AD	ł		Add	lress		0x00
Bit	7	6	5	4	3	2	1	0
	-		1	0	1	0	0	0
	-		R/W	R/W	R/W	R/W	R/W	RW
Function	Not Used				Channel			
			sets 2400 MHz; se					el is a fast
	annel above the f e synthesizer to s	1 / /1	y used in non-ove	napping wiri sys	terns. Any write			ne it takes

	TX_LENGTH_ADR Address							
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function			11	TX	Length			
and afte	d CRC16 fields (if er transmission o	enabled), but r f the packet has	packet to be transmodent o data field. Packo begun. Typically, ed 64-chip DDR wh	et lengths of mo , length is updat	ore than 16 bytes ed prior to settin	will require that g TX GO. The m	some data bytes	be written

Solutions for a Real Time World

Data Sheet

Mnemoni	C	TX_CTRL_ADR	2		Add	lress		0x02
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	1	1
Read/Write	e R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	TX GO	TX CLR		TXB8 IRQEN	TXB0 IRQEN	TXBERR IRQEN	TXC IRQEN	TXE IRQEN
COC	er setting this bit, th le, the length of pre- P codes the time aba	amble, and the pa	icket data rate. I	For example, if st	arting from idle m	ode on a fast cha	annel in 8DR mod	le with 32 chi
no Bit 6 Clea fev	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re TX GO bit has been	er at the end of tr g a 1 to this regist transmitted by se	ansmission of the ter clears the tran tting TX GO and	e length field, a T nsmit buffer. Wri not setting this bi	XBERR IRQ will out this bit it. If a new transition	ccur and transmis has no effect. T mit packet is to b	ssion will abort. The previous pack	et (16 or
no Bit 6 Clea fev the	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re	er at the end of tr g a 1 to this regist transmitted by se set, then this bit	ansmission of the ter clears the trar tting TX GO and should be set be	e length field, a T nsmit buffer. Wri not setting this bi fore loading a ne	XBERR IRQ will o ting a 0 to this bit it. If a new transu w transmit packet	ccur and transmis has no effect. T mit packet is to b	ssion will abort. The previous pack	et (16 or
no Bit 6 Clea fev the Bit 5 Bu	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re e TX GO bit has been	er at the end of tr g a 1 to this regist transmitted by se set, then this bit : Enable. See TX_	ansmission of the ter clears the trar tting TX GO and should be set be IRQ_STATUS_AI	e length field, a T nsmit buffer. Wri not setting this bi fore loading a ne DR for description	XBERR IRQ will o ting a 0 to this bit it. If a new transı w transmit packet n.	ccur and transmis has no effect. T mit packet is to b	ssion will abort. The previous pack	et (16 or
no Bit 6 Cle fev the Bit 5 Bu Bit 4 Bu	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re tr TX GO bit has been ffer Not Full Interup	er at the end of tr g a 1 to this regist transmitted by se set, then this bit Enable. See TX_ rupt Enable. See	er clears the trar tting TX GO and should be set be IRQ_STATUS_AI TX_IRQ_STATUS	e length field, a T nsmit buffer. Wri not setting this bi fore loading a ne DR for description S_ADR for descrip	"XBERR' IRQ will o ting a 0 to this bit it. If a new transu w transmit packet n. ption.	ccur and transmis has no effect. T mit packet is to b	ssion will abort. The previous pack	et (16 or
no Bit 6 Cle fev the Bit 5 Bu Bit 4 Bu Bit 3 Bu	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re e TX GO bit has been ffer Not Full Interupi ffer Half Empty Inter	er at the end of tr g a 1 to this regist transmitted by se set, then this bit Enable. See TX_ rupt Enable. See Enable. See TX_	er clears the trar tting TX GO and should be set be IRQ_STATUS_AI TX_IRQ_STATUS_AD IRQ_STATUS_AD	e length field, a T nsmit buffer. Wri not setting this bi fore loading a ne DR for description S_ADR for descrip DR for description.	"XBERR' IRQ will o ting a 0 to this bit it. If a new transu w transmit packet n. ption.	ccur and transmis has no effect. T mit packet is to b	ssion will abort. The previous pack	et (16 or
no Bit 6 Cle fev the Bit 5 Bu Bit 4 Bu Bit 3 Bu Bit 2 Bu	bytes in the TX buff ar TX Buffer. Writing ver bytes) may be re TX GO bit has been ffer Not Full Interupt ffer Half Empty Inter ffer Empty Interrupt	er at the end of tr g a 1 to this regist transmitted by se set, then this bit : Enable. See TX_ rupt Enable. See Enable. See TX_ inable. See TX_IF	ansmission of the ter clears the trar tting TX GO and should be set be IRQ_STATUS_AI TX_IRQ_STATUS_AD RQ_STATUS_ADF	e length field, a T nsmit buffer. Wri not setting this bi fore loading a ne DR for description S_ADR for descrip DR for description.	TXBERR IRQ will o ting a 0 to this bit it. If a new transi w transmit packet n. ption.	ccur and transmis has no effect. T mit packet is to b to the buffer.	ssion will abort. he previous pack e loaded before/a	tet (16 or after the

Mnemonic		TX_CFG_ADR			Address					
Bit	7	6	5	4	3	2	1	0		
Default	-	-	0	0	1	1	0	1		
Read/Write	-	-	R/W	R/W R/W		R/W	R/W	RW		
Function	Not Used	Not Used	Data Code Length	Data	Mode	PA Setting				
	Code Length. Thi									
The data	ata mode is set to Mode. This field recommended tha	sets the data tra	' nsmission mode.	2 chip codes. Oo = 1-Mbps GF		ode. 10= DDR Mo	ode. 11= SDR Mo			

Data Sheet

Mnemonic	TX_IRQ_STATUS_ADR				0x04			
Bit	7	6	5	4	3	2	1	0
Default	-	-	-	-	-	-	-	-
Read/Write	R	R	R	R	R	R	R	R
Function	OS IRQ	LV IRQ	TXB15 IRQ	TXB8 IRQ	TXB0 IRQ	TXVERR IRQ	TXC IRQ	TXE IRQ

The state of all IRQ status bits is valid regardless of whether or not the IRQ is enabled. The IRQ output of the device is in its active state whenever one or more bits in this register is set and the corresponding IRQ enable bit is also set. Status bits are non-atomic (different flags may change value at different times in response to a single event).

- Bit 7 Osciliator Stable IRQ Status. This bit is set when the internal crystal oscillator has settled (synthesizer sequence starts).
- Bit 6 Low Voltage Interrupt Status. This bit is set when the voltage on VBAT is below the LVI threshold (see PWR_CTL_ADR). This interrupt is automatically disabled whenever the PMU is disabled. When enabled, this bit reflects the voltage on VBAT.
- Bit 5 Buffer Not Full Interrupt Status. This bit is set whenever there are 15 or fewer bytes remaining in the the transmit buffer.
- Bit 4 Buffer Half Empty Interrupt Status. This bit is set whenever there are 8 fewer bytes remaining in the transmit buffer.
- Bit 3 Buffer Empty Interrupt Status. This bit is set at any time that the transmit buffer is empty.
- Bit 2 Buffer Error Interrupt Status. The IRQ is triggered by either of two events: (1) When the transmit buffer (TX_BUFFER_ADR) is empty and the number of bytes remaining to be transmitted is greater than zero. (2) When a byte is written to the transmit buffer and the buffer is already full. This IRQ is cleared by setting bit TX CLE in TX_CTRL_ADR.
- Bit 1 Transmission Complete Interrupt Status. This IRQ is triggered when transmission is complete. If transaction mode is not enabled then This interrupt is triggered immediately after transmission of the last bit of the CRC16. If transaction mode is enabled, this interrupt is Triggered at the end of a transaction. Reading this register clears this bit. TXC IRQ and TXE IRQ flags may change value at different times in response to a single event. If transaction mode is enabled and the first read of this register returns TXC IRQ=1 and TXE IRQ=1 and TXE IRQ=0 then firmware must execute a second read to this register to determine if an error occurred by examining the status of TXE. There can be a case when this bit is not triggered when ACK EN = 1 and there is an error in transmission. If the first read of this register returns TXC IRQ = 1 and TXE IRQ = 1 then the firmware must not execute a second read to this register for a given transaction. If an ACK is received RXC IRQ and RXE IRQ may be asserted instead of TXC IRQ and TXE IRQ.
- Bit 0 Transmit Error Interrupt Status. This IRQ is triggered when there is an error in transmission. This interrupt is only applicable to transaction mode. It is triggered whenever no valid ACK packet is received within the ACK timeout period. Reading this register clears this bit. See TXC IRQ, above.

Solutions for a Real Time World

Data Sheet

Mnemonic		RX_CTRL_ADR			Address				
Bit	7 6		5	4	3	2	1	0	
Default	0	0	0	0	0	1	1	1	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	RW	
Function	RX GO	RSVD	RXB16 IRQENI	RXB8 IRQEN	RXB1 IRQEN	RXBERR IRQEN	RXC IRQEN	RXE IRQEN	

Bit 7 Start Receive. Setting this bit causes the device to transition to receive mode. If necessary, the crystal oscillator and synthesizer will start automatically ater this bit is set. Firmware must never clear this bit. This bit must not be set again until after it self clears. The recommended method to exit receive mode when an error has occurred is to force END STATE and then dummy read all RX_COUNT_ADR bytes from RX_BUFFER_ADR or poll RSSI_ADR.SOP (bit 7) until set. See XACT_CFG_ADR and RX_ABORT_ADR for description.

Bit 5 Buffer Full Interrupt Enable. See RX_IRQ_STATUS for description.

Bit 4 Buffer Half Empty Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

- Bit 3 Buffer Not Empty Interrupt Enable. RXB1 IRQEN must not be set when RXB8 IRQEN is set and vice versa. See RX_IRQ_STATUS_ADR for description.
- Bit 2 Buffer Error Interrupt Enable. See RX_IRQ_STATUS_ADR for description.
- Bit 1 Packet Reception Complete Interrupt Enable. See RX_IRQ_STATUS_ADR for description.
- Bit 0 Receive Error Interrupt Enable. See RX_IRQ_STATUS_ADR for description.

Bit 6 Reserved. Must be zero.

Data Sheet

Mnemonic		RX_CFG_ADR			Ado	dress		0x06
Bit	7	6	5	4	3	2	1	0
Default	1	0	0	1	0	-	1	0
Read/Write	R/W	R/W	R/W	R/W	R/W	-	R/W	RW
Function	AGC EN	LNA	ATT	HILO	FAST TURN EN	Not Used	RXOW EN	VLD EN

Status bits are non-atomic (different flags may change value at different times in response to a single event).

- Bit 7 Automatic Gain Control (AGC) Enable. When this bit is set, AGC is enabled, and the LNA is controlled by the AGC circuit. When this bit is cleared the LNA is controlled manually using LNA bit. Typical applications will clear this bit during initializination. It is recommended that this bit be cleared and bit 6 (LNA) be set unless the device will be used in a system where it may receive data from a device using an external PA to transmit signals at >+4 dBm.
- Bit 6 Low Noise Amplifier (LNA) Manual Control. When AGC EN (Bit 7) is cleared, this bit controls the state of the receiver LNA; when AGC EN Is set, this bit has no effect. Setting this bit enables the LNA; clearing this bit disables the LNA. Device current in receive mode is slightly Lower when the LNA is disabled. Typical applications will set this bit during initialization.
- Bit 5 Receive Attenuator Enable. Setting this bit enables the receiver attenuator. The receiver attenuator may be used to de-sensi-tize the receiver so that only very strong signals may be received. This bit should only be set when the AGC EN is disabled and the LNA is manually disabled.
- Bit 4 HILO. When FAST TURN EN is set, this bit is used to select whether the device will use the high frequency for the channel selected, or The low frequency. 1 = hi; 0 = lo. When FAST TURN EN is not enabled this also controls the highlow bit to the receiver and should be Left at the default value of 1 for high side receive injection. Typical applications will clear this bit during initialization.
- Bit 3 Fast Turn Mode Enable. When this bit is set, the HILO bit determines whether the device receives data transmitted 1 MHz above the RX Synthesizer frequency or 1 MHz below the receiver synthesizer frequency. Use of this mode allows for very fast turn-around, because the same synthesizer frequency may be used for both transmit and receive, thus eliminating the synthesizer resetting period between transmit and receive. Note that when this bit is set, and the HILO bit is cleared, received data bits are automatically inverted to compensate for the inversion of data received on the "image" frequency. Typical applications will set this bit during initialization.
- Bit 1 Overwrite Enable. When this bit is set, if an SOP is detected while the receive buffer is not empty, then the existing contents of receive Buffer are lost, and the new packet is loaded into the receive buffer. When this bit is set, the RXOW IRQ is enabled. If this bit is cleared, Then the receive buffer may not be over-written by a new packet, and whenever the receive buffer is not empty SOP conditions are Ignored, and it is not possible to receive data until the previously received packet has been completely read from the receive buffer.
- Bit 0 Valid Flag Enable. When this bit is set, the receive buffer can store up to 8 bytes of data interleaved with valids (data0, valids0, data1, valids1...). Typically, this bit is set only when interoperability with first generation devices is desired. See RX_BUFFER_ADR for more detail.

Solutions for a Real Time World

Data Sheet

Mnem	nonic	RX_	IRQ_STATUS	_ADR		Ade	dress		0x07
Bit		7	6	5	4	3	2	1	0
Defaul	t	-	-	-	-	-	-	-	-
Read/	Write	R/W	R	R	R	R	R	R	R
Functio	on	RXOW IRQ	SOPDET IRO	RXB16 IRQ	RXB8 IRQ	RXB1 IRQ	RXBERRIRQ	RXC IRQ	RXE IRQ
whene change	ever one e value a ansmissi Receiv previou the RX buffer. Start c Receiv	or more bits in t at different times on due to an exc e Overwrite Inter us packet has bee OWEN bit in RX_ f packet detect. er Buffer Full Int	this register is so in response to eption does not rrupt Status. Th en read from the CFG_ADR is set. This bit is set w errupt Status. T	dless of whether et and the corresp a single event). leave the device i is IRQ is triggered buffer. This bit i This bit must be henever the start his bit is set when tus. This bit is set	oonding IRQ ena In particular, sta in an inconsistent d when the receiv is cleared by writ written "1" by fi of packet symbo vever the receive	ble bit is also set ndard error hand t state. ye buffer is over ing any value to rmware before th I is detected. buffer is full, and	: Status bits are ling is only effect written by a packe this register. This he new packet ma d cleared otherwis	non-atomic (diff ive if the premate et being received s condition is only be read from t	erent flags m cure termination before the y possible who he receive
nust		xactly eight byte	·				.,		
Bit 3 when and	the rec flag ha packet unload	eive buffer is em s cleared. This c is still being rec ing the packet da	pty. It is possib an ONLY happe eived. The flag ata during recep	tatus. This bit is ne, in rare cases, n on the last byte is trustworthy und tion, the user sho he number of byte	that the last byte of a packet and der all other con uld be sure to ch	of a packet may only if the packed ditions, and for a eck the RX_COUI	remain in the bu t data is being rea all bytes prior to t NT_ADR value aft	ffer even though ad out of the buf the last. When t er the RXC IRQ/I	the RXB1 IRC fer while the using RXB1 IR RXE IRQ is set
Bit 2		t to read data. (This IRQ is trigger ceive buffer is full					
Bit 1	this bi receiv single should RXE II RXE II	t is not set until a ed. This bit is cle event. There ar I examine RXC IF RQ = 0 then firm	after transmissic eared when this e cases when th Q, RXE IRQ, an ware must exec ead of this regist	us. This IRQ is tr in of the ACK. If it register is read. I is bit is not trigge d CRC 0 to deterr ute a second read er returns RXC IR	transaction mode RXC IRQ and RXI red when ACK EN nine receive statu to this register t	is not enabled the EIRQ flags may $c_{\rm N} = 1$ and there is a s. If the first read o determine if an	nen this bit is set change value at d s an error in rece ad of this register error occurred b	as soon as a vali ifferent times res ption. Therefore returns RXC IRC y examining the	d packet is sponse to a , firmware <u>)</u> = 1 and status of
Bit 0	a bad (still no	CRC16, an unexp	ected EOP is de e next packet sta	Q is triggered who tected, a packet t arts. The exact ca	ype (data or ACK) mismatch, or a	packet is dropped	because the real	ceive buffer is

Solutions for a Real Time World

Data Sheet

Mnemo	onic	RX_STATUS_AD	DR		Ado	dress		0x08			
Bit	7	6	5	4	3	2	1	0			
Default	-	-	-	-	-	-	-	-			
Read/W	rite R	R	R	R	R	R	R	R			
Functior	Function RX ACK PKT ERR EOP ERR CRC0 Bad CRC RX Code RX Data Mode										
	It is expected that firmware does not read this register until after TX GO self clears. Status bits are non-atomic (different flags may change value at different times in response to a single event)										
Bit 7	RX Packet Type. Thi	s bit is set when th	e received packe	t is an ACK packe	et, and cleared wl	nen the received p	acket is a standa	ard packet.			
Bit 6	Receive Packet Type received was as exp			/1		•		cket type			
Bit 5	Unexpected EOP. The bit is cleared when S the length field and	OP pattern for the	next packet has		5						
Bit 4	Zero-seed CRC 16.	his bit is set when	ever the CRC 16	of the last receive	ed packet has a z	ero seed.					
Bit 3	Bad CRC 16. This bit	is set when the C	RC 16 of the last	received packet i	s incorrect.						
	Bit 2 Receive Code Length. This bit indicated the DATA_CODE_ADR code length used in the last correctly received packet. $1 = 64$ -chip code, $0 = 32$ -chip code.										
	Receive Data Mode. 11 = Not Valed. The				ly received packe	t. 00 = 1-Mbps G	FSK 01 = 8DR 1	0 = DDR.			

Mnemonic		RX_COUNT_AD	R		Ad	dress		0x09		
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R	R	R	R	R	R	R	R		
Function		RX Count								
Count bits are	e non-atomic (upd	ated at different	times).							
co RX	mplete, this regist	ter will match the	e value in RX_LÉN	es received during IGTH_ADR unless enabled, after the	there was a pag	cket error. This re	egister is cleared	when		

Solutions for a Real Time World

Data Sheet

Mnemonic	R	X_LENGTH_AD	R		Ado	dress		0x0A	
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R	R	R	R	R	R	R	R	
Function	RX Length								
Lengths bits a	re non-atomic (dif	fferent flags may	change value at	different times ir	response to a s	ingle event).			
	is register contain: there is an error ir								

Mnemon	ic	PWR_CTRL_AD	R		Ado	dress		0x0B
Bit	7	6	5	4	3	2	1	0
Default	1	0	1	-	0	0	0	0
Read/Writ	te R/W	R/W	R/W	-	R/W	R/W	R/W	RW
Function	PMU EN	LVIRQ EN	PMU SEN	Not Used	LVI	LVI TH PM		VTUC
VI	oltage is above the va BAT voltage is below UTV.							
th	ow Voltage Interrupt e threshold set by LV /I event on IRQ pin is	/I TH, then a low	voltage interrupt	will be generated	d. The LVI is not			
Tł	MU Sleep Mode Enab nen the PMU is disabl ne device enters slee	led when the devi	ice is in sleep mo	de. In this case,	if VBAT is below	the PMU OUTV	voltage and PMU E	N is set, when
	ow Voltage Interrupt 0 = PMU OUTV volta		field sets the volt	age VBAT at whi	ch the LVI is trigg	gered. 11 = 1.8	V; 10 = 2.0V; 01 =	= 2.2v;
Bits 1:0 P PMU	MU Output Voltage.	This field sets the	ne minimum outp	out voltage of the	e PMU. 11 = 2.4	V; 10 = 2.5V; 0	1 = 2.6V; 00 = 2.	.7V. When the
I	s active, the voltage (han the specified ma						al load on the VRE	G pin is less

Solutions for a Real Time World

Data Sheet

Mnemonic		XTAL_CTRL_A	DR		Ado	dress		0x0C	
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	0	1	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function	XOU	T FN	XSIRQ EN	Not Used	Not Used	FREQ			
LOW F	PA Control: 10 = F	Radio data serial	tween the differer bit stream. If this data stream: 11	option is selecte	d and SPI is conf	igured for 3-wire	mode then the N	4ISO pin will	
			enables the OS IR n from sleep mode				es an IRQ event v	when the crystal	
	Frequency. This f Hz, 4 = 0.75 MHz		quency output on t e not defined.	the XOUT pin wh	en XOUT FN is se	et to 00. 0 = 12	MHz; 1 = 6 MHz	, 2 = 3MHz, 3 =	

Mnem	nonic		IO_CFG_ADR			Ad	dress		0x0D
Bit		7	6	5	4	3	2	1	0
Default 0 0 Read/Write R/W R/W		0	0	0	0	0	0		
Read/	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Functi	on	IRQ OD	IRQ POL	MISO OD	XOUT OD	PACTL OD	PACTL GPIO	SPI 3PIN	IRQ GPIO
Functi	on	Not Used	Channel						
To use	a GPIO	pin as an input, t	he output mode i	nust be set to op	en drain, and a "1	" written to the c	orresponding outp	out register bit.	
Bit 7) pin as an open o age being equal t		aring this bit configage.	gures the IRQ pin	
Bit 6		blarity. Setting thi to be active low		he IRQ signal pol	arity to be active	HIGH. Clearing t	his bit configures	the IRQ signal	
Bit 5					IISO pin as an op drive voltage bei		Clearing this bit co /IO pin voltage.	onfigures the	
Bit 4					(OUT pin as an o " drive voltage be		Clearing this bit o	configures the	
Bit 3					PACTL pin as an 1" drive voltage b		ut. Clearing this bi Vio pin voltage.	t configures the	
Bit 2	PACTI	Pin Function. W	/hen this bit is se	t the PACTL pin i	s available for us	e as a GPIO.			
Bit 1		ce operates in "3-					iterface. When thi nd the MISO pin i		2
Bit 0	In IRQ onto th	POL. When this	bit is set, the IRC his case the IRQ s	pin is available	for use as a GPIC	pin, and the IR	he polarity of this Q function is multi r the SS signal is	plexed	igurable

Solutions for a Real Time World

Data Sheet

Mnemonio	;	GPIO_CTRL_A	DR		Ado	lress		0x0E
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	-	-	-	-
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Function	XOUT OP	MISO OP	PACTL OP	IRQ OP	XOUT IP	MISO IP	PACTL IP	IRQ IP
	O Output. When the	•	0	·			•	
		•	0	·			•	
Bit 4 IRC	Output. When the	IRQ pin is config	ured to be a GPIC	D, the state of this	bit sets the outp	ut state of the IR	Q pin.	
Bit 3 XO	JT Input. The state	of this bit reflects	the voltage on th	ne XOUT pin.				
Bit 2 MIS	O Input. The state of	of this bit reflects	the voltage on the	e MISO pin.				
Bit 1 PAG	CTL Input. The state	e of this bit reflect	s the voltage on t	he PACTL pin.				

Bit 0 IRQ Input. The state of this bit reflects the voltage on the IRQ pin.

Mnei	monic		XACT_CFG_AD	R		Add	Iress		0x0F	
Bit		7	6	5	4	3	2	1	0	
Defau	ult	-		1	0	1	0	0	0	
Read	/Write	R/W	-	R/W	R/W	R/W	R/W	R/W	R/W	
Funct	ion	ACK EN	Not Used	FRC END		END STATE		ACK TO		
Bit 5	transiti end of Force same t is auto	ions to the END S packet transmiss End State. Settin time as setting th matically cleared	STATE. When thi sion. This bit affe g this bit forces a is bit the device r upon completior	in transaction more s bit is cleared, the cts both transmitti a transition to the s may be forced to in n. Firmware MUST ived (packet reception	e device transitions ng and receiving state set in END mmediately trans Γ never try to for	ons directly to the devices. STATE. By settin sition from its curro ce END STATE w	END STATE imr g the desired EN ent state to any c	nediately after the D STATE at the other state. This bi	it	
Bits 4:2	= Slee typical when t device RXE IF	p Mode; 001 = Id ly be set to 000 o the device transiti can begin receiv RQ to determine	le Mode; 010 = 5 r 001 when the c ons to receive m ing data. If the s the status of the	s the mode to whit Synth Mode (TX); levice is transmitti ode as an END S ystem only suppor packet. If the syste , force RXF=0, an	011 = Synth Moo ing packets, and TATE, the receiv t packets <=16 l em supports pac	de (RX); 100 = RX 100 when the dev ver must still be ar bytes then firmwar kets > 16 bytes er	(Mode. In norma vice is receiving p med by setting R re should examin nsure that END S	II use, this field wil backets. Note that X GO before the le RXC IRQ and	1	
Bits 1:0	packet timeou is this	t during which an It period is expres	ACK must be co ssed in terms of a by 64 µs and if S	gured for transaction rrectly received in a number of SOP_ OP LEN is cleared R code length AC	order to preven CODE_ADR co then the timeou	t a transmit error o de lengths; if SOP it is this value mul	condition from be LEN is set, then tiplied by 32 μs.	ing detected. This the timeout perio 00 = 4x; 01 = 8x,		

Data Sheet

8DR) + Preamble Length + SOP Code Length (x2).

Mnemo	onic I	RAMING_CFG_	ADR		Ado	dress		0x10		
Bit	7	6	5	4	3	2	1	0		
Default	1	0	1	0 0 1 0		0	1			
Read/W	/rite R/W	R/W	R/W	R/W	R/W	R/W	R/W	RW		
Functior	n SOP EN	SOP LEN	LEN EN	SOP TH						
w Bit 6 S	SOP field will be receiv vill begin whenever tw SOP PN Code Length SOP_CODE_ADR coo	o successive con	elations against th set the SOP_COD	e DATA_CODE_	ADR code are de	etected.		on		

Bits 4:0 SOP Correlator Threshold. This is the receive data correlator threshold used when attempting to detect a SOP symbol. There is a single threshold for the SOP_CODE_ADR code. This threshold is applied independently to each of SOP1 and SOP2 fields. When SOP LEN is set, all 5 bits of this field are used. When SOP LEN is cleared, the most significant bit is disregarded. Typical applications configure SOP TH = 04h for SOP32 and SOP TH = 0Eh for SOP64.

Mnemonic	DA	TA32_THOLD_	ADR		Address				
Bit	7	6	5	4	3	2	1	0	
Default	-	0 1 0		0					
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W	
Function	Not Used	Not Used	Not Used	Not Used	TH32				
Bits 7:4 Not U	lsed.								
Rite 3.0 32 Ch	nin Data PN Code	Corrolator Thro	shold This regist	or sets the correl	ator threshold us	od in DSSS mod	los whon DATA		

Bits 3:0 32 Chip Data PN Code Correlator Threshold. This register sets the correlator threshold used in DSSS modes when DATA CODE LENGTH (see TX_CFG_ADR) is set to 32. Typical applications configure TH32 = 05h.

Mnemonic	DA	TA64_THOLD_	ADR		Address				
Bit	7	6	5	4	3	2	1	0	
Default	-	-	-	-	0	1	0	0	
Read/Write	-	-	-	R/W	R/W	R/W	R/W	R/W	

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Data Sheet

Solutions for a Real Time World

Function Not Used Not Used Not Used TH64 Bits 7:4 Not Used. Bits 3.0 64 Chip Data PN Code Correlator Threshold. This register sets the correlator threshold used in DSSS modes when DATA CODE LENGTH (see TX CFG ADR) is set to 64. Typical applications configure TH64 = 0Eh.

RSSI_ADR Mnemonic Address 0x13 Bit 7 5 4 3 2 1 0 6 Default 0 _ 1 0 0 0 0 0 Read/Write R R R R R R R Function SOP Not Used LNA RSSI A Received Signal Strength Indicator (RSSI) reading is taken automatically when an SOP symbol is detected. In addition, an RSSI reading is taken whenever RSSI_ADR is read. The contents of this register are not valid after the device is configured for receive mode until either a SOP

symbol is detected, or the register is (re)read. The conversion can occur as often as once every 12-us. The approximate slope of the curve is 1.9 dB/count, but is not guaranteed.

If it is desired to measure the background RF signal strength on a channel before a packet has been received then the MCU should perform a "dummy" read of this register, the results of which should be discarded. This "dummy" read will cause an RSSI measurement to be taken, and therefore subsequent readings of the register will yield valid data.

SOP RSSI Reading. When set, this bit indicates that the reading in the RSSI field was taken when a SOP symbol was Bit 7 detected. When cleared, this bit indicates that the reading stored in the RSSI field was triggered by a previous SPI read of this register.

LNA State. This bit indicates the LNA state when the RSSI reading was taken. When cleared, this bit indicates that the LNA Bit 5 was disabled when the RSSI reading was taken; if set this bit indicates that the LNA was enabled when the RSSI reading was taken

Bits 4:0 RSSI Reading. This field indicates the instantaneous strength of the RF signal being received at the time that the RSSI reading was taken. A larger value indicates a stronger signal. The signal strength measured is for the RF signal on the configured channel, and is measured after the LNA stage.

Mnemo	onic		EOP_CTRL_AD	R		Ad	dress		0x14
Bit		7	6	5	4	3	2	1	0
Default		1	0	1	0	0	1	0	0
Read/W	Vrite	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Functio	n	HEN HINT EOP			EOP				
an EOP (Bit 7	(end of EOP I symbo bytes.	Fpacket) conditio Hint Enable. Whe pl periods set by to Use of this mode	n is detected. en set, this bit will the HINT field and e reduces the cha	cause an EOP to d the last two rec ince of non-corre	b be detected if no eived bytes matcl lations in the mid	o correlations ha the calculated dle of a packet fi	, then this register ve been detected CRC16 for all pre rom being detecte	for the number o viously received d as an EOP con	f
			nt. The minimum alculated CRC16 f			non-correlation:	s at which the last	two bytes are	
Bits 4:0	EOP S	Symbol Count. Ar	n EOP condition i	s deemed to exis	t when the numb	er of consecutive	e non-correlations	is detected.	
Re-Tek - 1 94539	e-Tek - 1459 4539				- 34 -	Warm Springs B	lvd. Fremont, (

TEL: (510) 668.2088 FAX: (510) 661.2788

Customer Comment Line: (800) 826.0808

Solutions for a Real Time World

Data Sheet

Mnemonic	CRO	C_SEED_LSB_/	ADR		Address					
Bit	7	6	5	4	3	2	1	0		
Default	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Function	CRC SEED LSB									
use a randomly s	selected CRC16	seed, the probal	erate or recognize pility of correctly r DE_ADR codes a	eceiving data inte						

Mnemonic	CR	C_SEED_MSB_	ADR		0x16				
Bit	7	6	5	4	3	2	1	0	
Default	0	0	0	0	0	0	0	0	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Function	CRC SEED MSB								

Mnemonic	TX_CRC_LSB_ADR Address					0x17		
Bit	7	6	5	4	3	2	1	0
Default	-	-	-	-	-	-	-	-
Read/Write	R	R	R	R	R	R	R	R
Function				TX CR	C LSB	1		
	ulated CRC16 LS tet transmission is		e CRC16 that wa	is calculated for t	he last transmitte	ed packet. This va	lue is only valid a	ifter

Mnemonic	TX_CRC_MSB_ADR				0x18			
Bit	7	6	5	4	3	2	1	0
Default	-	-	-	-	-	-	-	-

45388 Warm Springs Blvd. Fremont, CA

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Data Sheet

Solutions for a Real Time World

Read/Write	R	R	R	R	R	R	R	R		
Function	n TX CRC MSB									
	ulated CRC16 MS et transmission is		he CRC16 that w	as calculated for	the last transmitt	ed packet. This v	alue is only valid	after		

Mnemonic	R	X_CRC_LSB_A	DR		0x19			
Bit	7	6	5	4	3	2	1	0
Default	1	1	1	1	1	1	1	1
Read/Write	R	R	R	R	R	R	R	R
Function				RX CR	C LSB			
	eived CRC16 LSB CRC16 field matc				st received pack	et. This value is v	valid whether or ne	ot

6	5	4	3	2	1	0
1					_	Ŭ
-	1	1	1	1	1	1
R	R	R	R	R	R	R
		RX CR	C MSB			
					MSB. The MSB of the CRC16 field extracted from the last received packet. This value is	RX CRC MSB 6 MSB. The MSB of the CRC16 field extracted from the last received packet. This value is valid whether or

Mnemonic	TX_OFFSET_LSB_ADR Address								
Bit	7 6 5 4 3 2 1								
Default	0	0	0	0	0	0	0	0	
Read/Write	R/W	R	R	R	R	R	R	R	
Function			L	STRI	1 LSB	I	L		
offse value trans the tr avoic is off	t the transmit free e reduces the transmit frequency by ransmit frequency d the need to char	quency of the dev smit frequency. 732.6 Hz. A valu y by 1 MHz. Typio nge the synthesiz ne synthesizer fre	vice by up to ±1.5 A value of +1 incr ie of 0x0555 incre cally, this register zer frequency who equency; therefor	MHz. A positive reases the transmi asses the transmi is loaded with 0x en switching betw	value increases t nit frequency by 7 t frequency by 1 55 during initializ veen TX and RX.	the transmit freque (32.6 Hz; a value MHz; a value of (cation. Typically the As the IF = 1 MH	which may be used ency, and a nega of –1 decreases t bxAAB decreases his feature is used Iz the RX frequen synthesizer frequ	tive the I to cy	

Synthesizer offset has no effect on receive frequency.

Mnemonic	TX_OFFSET_MSB_ADR				0x1C			
Bit	7	6	5	4	3	2	1	0

45388 Warm Springs Blvd. Fremont, CA

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Solutions for a Real Time World

Data Sheet

Default	-	-	-	-	0	0	0	0
Read/Write	-	-	-	-	R/W	R/W	R/W	R/W
Function	Not Used	Not Used	Not Used	Not Used	STRIM MSB			
Bits 7:4 Not U								
Bits 3:0 The	most significant 4	bits of the synth	esizer trim value.	Typically, this re	gister is loaded w	ith 0x05 during ir/	nitialization.	

Mnemo	onic	MO	DE_OVERRIDE	_ADR		А	ddress		0x1D							
Bit		7	6	5	4 3 2		1	0								
Default		0	0	0	0	0	-	-	0							
Read/W	/rite	W	W	W	W	W	-	-	W							
Functio	n	RSVD	RSVD	FRC SEN	FRC A	WAKE	Not Used	Not Used	RST							
Bit 5				this bit forces the s g before this bit is		art. Clearing thi	s bit has no effect.	For this bit to oper	ate							
Bits 4:3	corre	ectly, the oscillato	r must be runnin	g before this bit is	set.	-	ne oscillator to keep									
2.10 .10				Clearing both of th												
Bits 2:1	Not l	Not Used.														
Bit 0	Rese	et. Setting this bit	forces a full rese	et of the device. Cl	earing this bit ha	s no effect.	Reset. Setting this bit forces a full reset of the device. Clearing this bit has no effect.									

in cinor	nic R	RX_OVERRIDE_ADR Address						
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	-
Read/Wr	ite R/W	R/W	R/W	R/W	R/W	R/W	R/W	-
Function	ACK RX	RXTX DLY	MAN RXACK	FRC RXDR	DIS CRC0	DIS RXCRC	ACE	Not Used
	hen this bit is set, the /en channel when aut			er frequency rath	her than the recei	ive synthesizer free	quency for the	
Bit 5 Fc AC Bit 4 Fc rea Bit 3 Re pao	hen this bit is set and prce Expected Packet CK packet at the data prce Receive Data Ra ceive data at the data ject packets with a ze ckets with a CRC16 th e RX CRC16 checker	ACK EN is enab Type. When this rate defined in T te. When this bit rate defined in T ro-seed CRC16. hat matches the s	led, the transmissi bit is set, and the X_CFG_ADR. is set, the receiver X_CFG_ADR. Setting this bit can seed in CRC_SEE	device is in rece r will ignore the d uses the receiver D_LSB_ADR and	ive mode, the de ata rate encoded to reject packets d CRC_SEED_M	vice is configured t I in the SOP symbo s with a zero-seed, SB_ADR.	ol, and will and accept only	,

Solutions for a Real Time World

Data Sheet

Bit 1 Accept Bad CRC16. Setting this bit causes the receiver to accept packets with a CRC16 that do not match the seed in CRC_SEED_LSB_ADR and CRC_SEED_MSB_ADR. An ACK is to be sent regardless of the condition of the received CRC16.

Bit 0 Not Used.

Mnem	nonic	T)	(_OVERRIDE_A	DR		Ado	dress		0x1F		
Bit		7	6	5	4	3	2	1	0		
Default	t	0	0	0	0 0 0 0						
Read/V	Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Functio	on	ACK TX	FRC PRE	RSVD	MAN TXACK	OVRD ACK	DIS TXCRC	RSVD	TX INV		
This reg	jister provi	ides the ability	to over-ride some	e automatic featu	res of the device.						
Bit 6	given cha Force Pre PREAMB RST of M	nnel when auto eamble. When t LE_ADR) after	omatically enterin this bit is set, the TX GO is set. Th DE_ADR to exit t	g transmit mode. device will transr iis mode is usefu	mit a continuous r	epetition of the p	nit synthesizer fre reamble pattern (s cedures. Firmware	see			
Bit 4	Transmit	ACK Packet. V	Vhen this bit is se	t, the device sen	ds an ACK packe	t when TX GO is	set.				
Bit 3	ACK Ove	rride. Use TX_	CFG_ADR to det	ermine the data i	rate and the CRC	16 used when tra	ansmitting an ACK	packet.			
Bit 2	Disable T	ransmit CRC16	6. When set, no C	CRC16 field is pre	esent at the end o	of transmitted pac	kets.				
Bit 1	Reserved	I. Must be zero									

Mnemonic		XTAL_CFG_AD	R		Addı	ress		0x26
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	RSVD	RSVD	START DLY	RSVD	RSVD	RSVD
Bit 7:4 Reserv Bit 6 Crystal	ed. Must be zero Startup Delay. S	etting this bit, se	e automatic featu ts the crystal star		e. uSec to handle war	m restarts of the	ə crystal. Firmwar	re
	set this bit during ved. Must be zero							

Solutions for a Real Time World

Data Sheet

Mnemonic	CLI	K_OVERRIDE_/	ADR		Ado	dress		0x27
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD
U .	ovides the ability t red. Must be zero		e automatic featu	ires of the device.		I		
Bit 1 Force F	Receive Clock. St	reaming applicati	ons MUST set th	nis bit during rece	ive mode, otherw	vise this bit is clea	red.	
Bit 0 Reserve	ed. Must be zero.							

Mnemonic		CLK_EN_ADR			Ado	dress		0x28
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RXF	RSVD
0 .	ved. Must be zero		e automatic featur	es of the device.				
Bit 1 Force F	Receive Clock En	able. Streaming a	applications MUS	T set this bit durir	ng initialization.			
Bit 0 Reserve	ed. Must be zero							

Mnemonic	I	RX_ABORT_AI	DR		Ade	dress		0x29
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	ABORT EN	RSVD	RSVD	RSVD	RSVD	RSVD
Bits 7:6 Reserv	ved. Must be zero		e automatic featur ons will disrupt any			nis bit, otherwise t	this bit is cleared.	
Bit 4:0 Reserv	ed. Must be zero.							

45388 Warm Springs Blvd. Fremont, CA

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Solutions for a Real Time World

Data Sheet

Mnemonic	AUTO_CAL_TIME_ADR Address							0x32
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	1	1
Read/Write	W	W	W	W	W	W	W	W
Function				AUTO_C	AL_TIME			
This register pro	vides the ability to	over-ride some	e automatic featur	es of the device.				
Bits 7:6 Auto Ca	al Time. Firmware	MUST write 30	h to this register o	during initializatio	on.			

Mnemonic	AUT	O_CAL_OFFSET	_ADR		Ado	dress		0x35
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function				AUTO_CA	L_OFFSET			
This register pro	ovides the ability	to over-ride some	e automatic featu	res of the device.				
Bits 7:0 Auto C	al Offset. Firmwa	are MUST write 1	4h to this register	r during initializati	on.			

Mnemonic	A	NALOG_CTRL_A	NDR		Ado	dress		0x39
Bit	7	6	5	4	3	2	1	0
Default	0	0	0	0	0	0	0	0
Read/Write	W	W	W	W	W	W	W	W
Function	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RX INV	ALL SLOW

This register provides the ability to over-ride some automatic features of the device.

Bits 7:2 Reserved. Must be zero

Bit 1 Receive Invert. When set, the incoming receive data is inverted. Firmware MUST set this bit when interoperability with JUNO (CYUSB6934/35) is desired.

Bit 0 All Slow. When set, the synth setting time for all channels is the same as for slow channels. It is recommended that the firmware set this bit When using GFSK data mode.

Re-Tek - 1459

Solutions for a Real Time World

Data Sheet

Files are written to or read from using non-incrementing burst read or write transactions. In most cases accessing a file may be destructive; the file must be completely read/written, otherwise the contents may be altered. When accessing file registers, the bytes are presented to the bus least significant byte first.

Mnemonic	TX_BUFFER_ADR	Address	0x20
Length	16 Bytes	R/W	W
Default	0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
TX_LENGTH_A A previously se	ADR will have no effect, and these bytes will be lost	packet being sent. Writing more bytes to this file than the packet len . The FIFO accumulates data until it is reset via TX CLR in TX_CTR TX_GO is set without resetting the FIFO. The contents of TX_BUFF	Ľ_ADR.

Mnemonic	RX_BUFFER_ADR	Address	0x21
Length	16 Bytes	R/W	R
Default	0xXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		
register before handled correct	a packet has been completely received care must b tly.	s file register at any time that it is not empty, but when reading from be taken to ensure that error packets (for example with bad CRC16) ckets (the alternative is for new packets to be discarded if the receive	are
is not empty), s	o i	has been read from the buffer that no part of it was overwritten by a	
	/ /	register alternate—the first byte read is data, the second byte is a valid flags etc. In SDR and DDR modes the valid flag for a bit is set if	0

for each bit in the first byte, the third byte is data, the fourth byte valid flags, etc. In SDR and DDR modes the valid flag for a bit is set if the correlation coefficient for the bit exceeded the correlator threshold, and is cleared if it did not. In 8DR mode, the MSB of a valid flags byte indicates whether or not the correlation coefficient of the corresponding received symbol exceeded the threshold. The seven LSBs contain the number of erroneous chips received for the data.

Mnemonic	SOP_CODE_ADR	Address	0x22
Length	8 Bytes	R/W	R/W
Default	0x17FF9E213690C782		
four bytes mus 64 chip codes and cross-corr and used for b When reading	t be followed by four bytes of "dummy" data. Howev with good auto-correlation and cross-correlation pro elation properties when used as 32-chip codes. In the oth 32 chip and 64 chip SOP symbols. this file, all eight bytes must be read; if fewer than e of bytes read. This applies to writes, as well. I SOP Codes: 291CC373C 00FA1C59B 22AB064EF 507CCD66 44F6E15C 46AECC5A 3CDC78A1 74198EB9 49C0B1DF	tes of this register are used; in order to complete the file write proce- rer, a class of codes known as "multiplicative codes" may be used; th perties where the least significant 32 chips themselves have good at his case the same eight-byte value may be loaded into this file ight bytes are read from the file, the contents of the file will have bee	ere are utocorrelation

Solutions for a Real Time World

Data Sheet

Mnemonic	DATA_CODE_ADR	Address	0x23			
Length	16 Bytes	R/W	R/W			
Default	0x02F9939702FA5CE3012BF1DB0132BE6F					
In GFSK mode,	this file register is ignored.					
In 64-SDR mod	e, only the first eight bytes are used.					
represents unus	In 32-DDR mode, only eight bytes are used. The format for these eight bytes: 0x0000000BBBBBBBBB0000000AAAAAAAA, where "0" represents unused locations. Example: 0x0000000B2BB092B0000000B86BC0DC; where "B86BC0DC" represents AAAAAAAA, "00000000" represents unused locations, "B2BB092B" represents BBBBBBBB, and "00000000" represents unused locations.					
In 64-DDR and	In 64-DDR and 8DR modes, all sixteen bytes are used.					
When reading this file, all sixteen bytes must be read; if fewer than sixteen bytes are read from the file, the contents of the file will have been rotated by the number of bytes read. This applies to writes, as well.						
that such seque	Certain sixteen-byte sequences have been calculated that provide excellent auto-correlation and cross-correlation properties, and it is recommended that such sequences be used; the default value of this register is one such sequence. In typical applications, all devices use the same DATA_CODE_ADR codes, and devices and systems are addressed by using different SOP_CODE_ADR codes; in such cases it may never be necessary to change the contents of this register from the default value.					

Typical applications should use the default code.

Mnemonic	PREAMBLE_ADR	Address	0x24		
Length	3 Bytes	R/W	R/W		
Default	0x333302				
1st byte – The i this byte.	number of repetitions of the preamble sequence the	at are to be transmitted. The preamble may be disabled by writing 0x0	00 to		
2nd byte – Least significant eight chips of the preamble sequence					
3rd byte – Most	significant eight chips of the preamble sequence				
		number of repetitions to four for optimum performance	n rotated		

When reading this file, all three bytes must be read; if fewer than three bytes are read from the file, the contents of the file will have been rotated by the number of bytes read. This applies to writes, as well.

Mnemonic	MFG_ID_ADR	Address	0x25		
Length	6 Bytes	R	R		
Default	N/A				
To minimize ~190µA of current consumption (default), execute a "dummy" single-byte SPI write to this address with a zero data stage after the contents have been read. Non-zero to enable reading of fuses. Zero to disable reading fuses.					

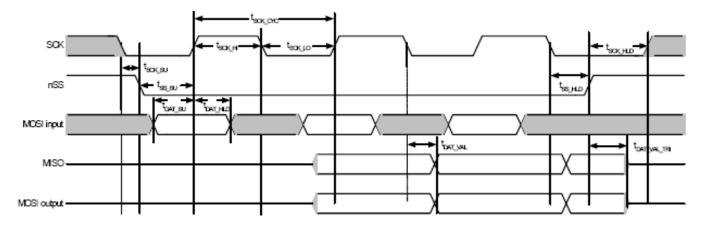
Data Sheet

DC Characteristics (T = 25°C, VBAT = 2.4V, PMU disabled, fosc = 12.000000MHz) LETO-LPAPB only

Parameter	Description	Conditions	Min	Тур.	Max.	Unit
LOAD_EXT	Average PMU External Load Current	$V_{BAT} = 1.8V, V_{REG} = 2.73V,$			15	mA
		0-50°C, RX Mode				
LOAD_EXT	Average PMU External Load Current	$V_{BAT} = 1.8V, V_{REG} = 2.73V,$			10	mA
		50-70°C, RX Mode				

AC Characteristics

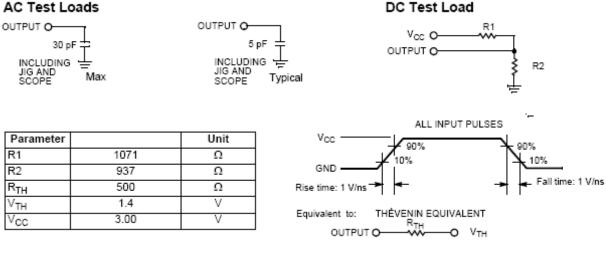
SPI Interface


Parameter	Description	Min	Тур.	Max.	Unit
^t SCK_CYC	SPI Clock Period	238.1			ns
^t SCK_HI	SPI Clock High Time	100			ns
^t SCK_LO	SPI Clock Low Time	100			ns
^t DAT_SU	SPI Input Data Set-up Time	25			ns
^t DAT_HLD	SPI Input Data Hold Time	10			ns
^t DAT_VAL	SPI Output Data Valid Time	0		50	ns
^t DAT_VAL_TRI	SPI Output Data Tri-state (MOSI from Slave Select Deassert)			20	ns
^t SS_SU	SPI Slave Select Set-up Time before first positive edge of SCK[14]	10			ns
^t SS_HLD	SPI Slave Select Hold Time after last negative edge of SCK	10			ns
^t SS_PW	SPI Slave Select Minimum Pulse Width	20			ns
^t SCK_SU	SPI Slave Select Set-up Time	10			ns
^t SCK_HLD	SPI SCK Hold Time	10			ns
^t RESET	Minimum RST pin pulse width	10			ns

Solutions for a Real Time World

Data Sheet

SPI Timing


Notes

13. CLOAD = 30 pF

14. SCK must start low at the time SS goes low, otherwise the success of SPI transactions are not guaranteed.

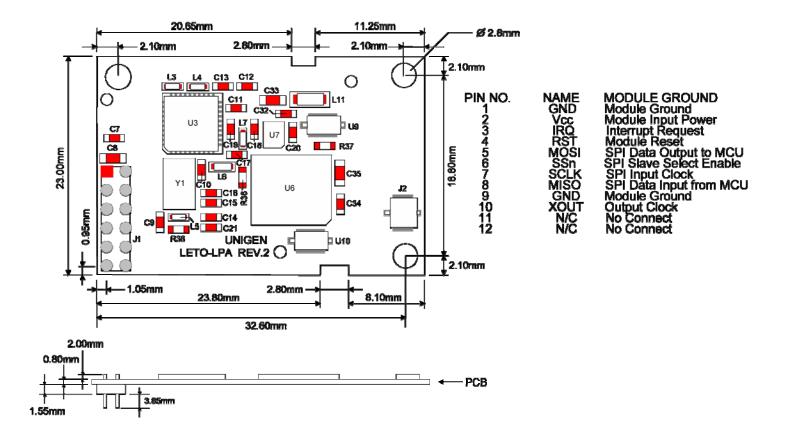
AC Test Loads and Waveforms for Digital Pins

AC Test Loads

45388 Warm Springs Blvd. Fremont, CA

TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

^{12.} AC values are not guaranteed if voltage on any pin exceed VIO.

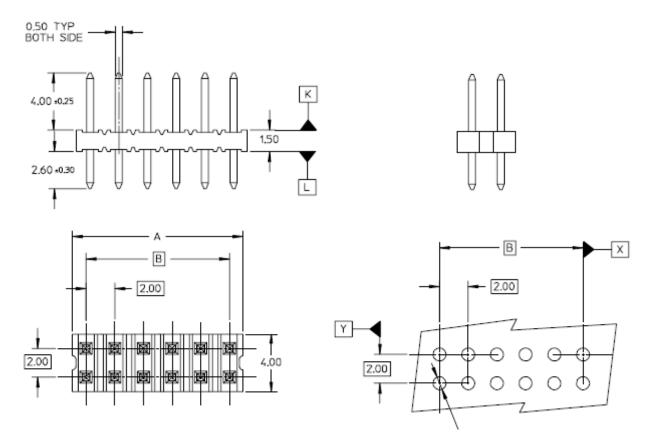

Solutions for a Real Time World

Data Sheet

Item	Description	Specification
1	PCB Material	FR-4
2	PCB Layers	4
3	Connector Type	Straight thru-hole or header, right angle thru-hole or header, Please see Table 4 for pin assignments
4	PCB Number	1
5	Flammability Rating	UL94 V-0
6	UGWJ4US Dimensions	1.36" x 0.90" x 0.225" (34.7mm x 23.0mm x 6.0 mm*) *board to board height
8	Antenna Cable Connector	Mini Co-Axial
9	User Serviceable Parts	None

MECHANICAL CHARACTERISTICS:

MECHANICAL DRAWINGS:



Solutions for a Real Time World

Data Sheet

Header Drawings (Molex P/N 87758-1216)

ORDERING INFORMATION:*

Typical Applications

Unigen Product Group – Wireless -	Form Factor	WirelessUSB Tech	Connection	Connector Type	Voltage	Antenna
UGW	L	4US (CYRF6936)	HN	Mirrored 2x6 Header	33 =3.3Vdc	Blank =Mini Coaxial

*Module based on the Cypress Semiconductor CYRF6936-48 WirelessUSB™ LP 2.4GHz DSSS Radio SoC device.

Contact your Unigen Sales Representative for additional information or visit the Nexus[™] Wireless Products section of our web site (<u>www.unigen.com</u>).

WirelessUSB[™] - UGWJ4US

Data Sheet

CONTACT INFORMATION:

CORPORATE HEADQUARTERS

Unigen Corporation 45388 Warm Springs Boulevard Fremont, CA 94539

> Telephone: 1 Fax: 1 Email: S Web: v Customer Comment: 1

1.510.688.2088 1.510.661.2788 Support@unigen.com www.unigen.com 1.800.826.0808

Solutions for a Real Time World

C A CONCELLA CONCELLA

The WirelessUSB[™] modules are highly integrated 2.4-GHz Direct Sequence Spread Spectrum (DSSS) Radio System-on-Chip (SoC) ICs.

From the Serial Peripheral Interface (SPI) to the antenna, these ICs are single-chip 2.4-GHz DSSS Gaussian Frequency Shift Keying (GFSK) baseband modems that connect directly to a USB controller or a standard microcontroller.

The Radio certification is available on the FCC web site and may be "grandfathered" into your design. However, customers will need to submit their end-product for individual compliance certificationThe modules feature a robust SPI interface.

Technical Specification

Wireless

Frequency band

Operate in ISM band (2.4 – 2.483 GHz)

- 2.412 2.462 GHz(US)
- 2.412 2.484 GHz (Japan)
- 2.412 2.472 GHz (EuropeTBI)
- 2.457 2.462 GHz (Spain)
- 2.457 2.472 GHz (France)
- Modulation Technique
 - DSSS (GFSK)

```
Data rate
```


Power output

• Up to +17 dBm (100 mW for LPA Module)

Data Sheet

Occupied Bandwidth

- 600 kHz
- **Power Density**
 - -13 dBm/MHz (PA = 7)

Range

Up to 100 m

General and Electical

Supplyvoltage

• 2.7- 3.6 Volt

Current Consumption

 Maximum 350 mA Peak (LPA Module), 25 mA RMS

Temperature

- Operating -40C to 85 C
- Storage -40C to 85 C

Humidity

- Operating 10% to 90% RH NC @ 50 C
- Storage 5% to 90% RH NC @ 60 C
- ModuleData Input
 - SPI

Mechanical

Size (Juno LPA): 1 30"x1.29" PCB Orientation

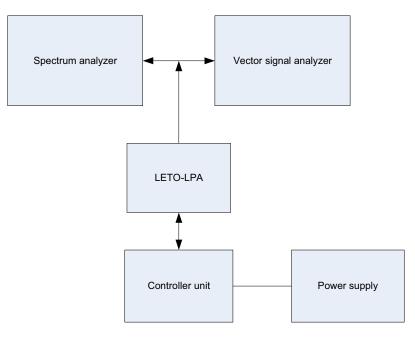
Horizontal

Connectors

- Bare (ribbon cable ready)
- Through Hole

45388 Warm Springs Blvd. Fremont, CA 94539 TEL: (510) 668.2088 FAX: (510) 661.2788 Customer Comment Line: (800) 826.0808

Copyright Unigen Corporation, 2004

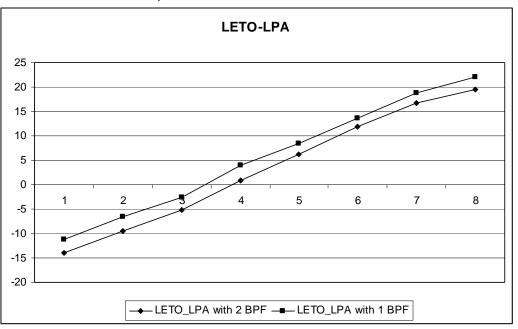

Storage 5% to

WirelessUSB[™] - UGWJ4US

Data Sheet

Test Setup Diagram

Controller unit (MAITDM3) install firmware name "testing board cy8c27443 24pvi(PA7)"


Solutions for a Real Time World

Data Sheet

Test Parameter

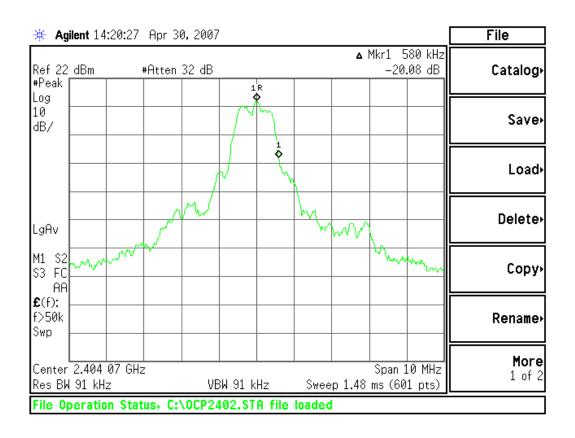
Output Power :

When performing tests that use direct port-to-port connections, the power output specifications are measured by a spectrum analyzer in time domain mode by setting zero span. The sweep time is adjusted to measure the maximum output power. This measurement already includes the effects of the transmitter and cable loss.

LETO-	LETO-
LPA with	LPA with
2 BPF	1 BPF
19.48	22.05
16.73	18.84
11.87	13.58
6.24	8.41
0.83	3.92
-5.11	-2.57
-9.52	-6.59
-13.99	-11.15

Power Density :

The power density measurement provides the peak power density in a 3 kHz bandwidth. Maximum density permitted is 8dBm/3kHz.


Channel	Frequency (MHz)	RBW & VBW	Output power (dBm)
Low	2402	3kHz	-0.5
Mid	2442	3kHz	-2.93
High	2480	3kHz	1.02

Data Sheet

 -20 dB bandwidth: This test is performed at the lowest, middle, and highest frequency channels. The peak RF level is recorded as a reference point. Then, the frequency difference between the reference point and the points where their power drops by 20 dB to both directions (99% bandwidth measurement) can be found. If this 99% bandwidth is greater than 1.5 MHz, eye diagram will be closed.

Channel	Frequency	RBW & VBW	IC RSS-210 (99%) (kHz)
	(MHz)		Rev F
Low	2402	100kHz	600
Mid	2442	100kHz	600
High	2480	100kHz	600

Data Sheet

• Frequency Spectrum

Set frequency between 30 MHz to 12.75 GHz.

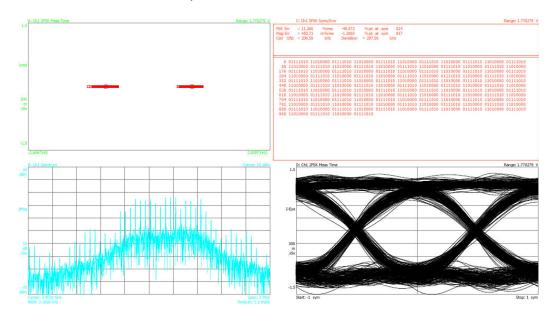
🔆 Agilent 14:53:23 Apr 30, 2007	Peak Search
Mkr1 2.40 GH Ref 30 dBm #Atten 40 dB 18.77 dBr #Peak	
Log 10 dB/	Next Pk Right
Marker	Next Pk Left
LgAv 18.77 dBm	Min Search
M1 S2 S3 FC	Pk-Pk Search
£(f):	Mkr → CF
Start 30 MHz Stop 15.00 GH Res BW 3 MHz VBW 3 MHz Sweep 29.96 ms (601 pts	
Printer not responding	

* Frequency spectrum when PA=7

WirelessUSB[™] - UGWJ4US

Data Sheet

Eye diagram


- FSK Err = 11.266 %rms
- Mag Err = 450.72 m%rms
- Carr Ofst = 206.58 kHz

Modulation property

- FSK 2
- 1 MHz symbol rate
- Gaussian filter , Alpha/B0.7

-40.572 %pk at sym 814

-1.3893 %pk at sym 817 Deviation = 297.58 kHz

WirelessUSB[™] - UGWJ4US

Data Sheet

CONTACT INFORMATION:

CORPORATE HEADQUARTERS

Unigen Corporation 45388 Warm Springs Boulevard Fremont, CA 94539

> Telephone: 1. Fax: 1. Email: Su Web: wv Customer Comment: 1.8

1.510.688.2088 1.510.661.2788 Support@unigen.com www.unigen.com 1.800.826.0808